本报告意在强调终端天线在消费电子产品设计中的重要性,通过详细梳理近年来电子产品中天线存在形式、制作工艺的变化历程,结合5G商用进度、智能手机外观创新、无线充电渗透率提高等行业大趋势,展望未来天线设计的演进路线,深入挖掘潜在的投资机会。

小天线里藏有大门道,技术创新驱动工业设计进步

小身材大作用,天线是电磁波进行传输的“灯塔”

无线电波构筑了现代通信系统的基础,虽然我们无法感受到它的存在,但它无时无刻不在影响我们的生活,而天线又是电磁波进行传输的核心元器件,它像一座“灯塔”一样,将我们和广阔的外部世界紧密联系在一起。从微小尺度看,在我们越来越依赖的智能手机中,就有移动通信天线、Wi-Fi/BT天线、GPS天线、NFC天线和无线充电线圈等;从宏大尺度看,刘慈欣在《三体》中用超群的想象力为我们描述了用于宇宙通信的引力波天线:“天线是一个横放的圆柱体,有一千五百米长,直径五十多米,整体悬浮在距地面两米左右的位置。它的表面也是光洁的镜面,一半映着天空,一半映着华北平原。”

无论是宏观还是微观,天线的本质都是在电磁场基本原理下,通过电场和磁场的相互转换,完成电磁能量的辐射和接收。除早已成熟的无线通信技术之外,近年来移动支付、无线充电等前沿技术,底层原理仍然是利用电磁感应现象,实现能量的相互转换,因此天线的应用领域在不断扩大。

天线的应用领域非常广泛,本报告重点关注以智能手机、平板电脑、笔记本电脑和可穿戴设备为代表的消费电子领域,其中智能手机由于出货量大、技术更新换代快,作为典型应用深入讨论。

027ednc20170825

以三星最新的旗舰智能机S8+为例,内部除了集成传统的移动通信天线(配合高通骁龙835基带,支持4X4 MIMO)、无线连接天线(Wi-Fi、BT、GPS)、近场通信天线(NFC,Near Field Communication)以外,还集成了最先进的磁性安全传输线圈(MST,Magnetic Secure Transmission)和无线充电线圈。

从移动通信的角度看,由于对数据传输速率的持续追求,载波聚合(CA)技术和多输入多输出(MIMO)技术的应用更加广泛,骁龙835最高可支持4载波聚合,并可配合MIMO技术将最高下载速率扩展到1Gbps,从天线角度,除了两根主天线和两根分集(Diversity)天线以外,额外增加了一根用于载波聚合的主天线,未来随着5G技术的发展,天线数量会继续增加。

028ednc20170825

需要注意的是,三星S8+使用玻璃背板,不存在金属背板对电磁波的屏蔽现象,因此降低了天线的设计难度。由此可以引出移动终端天线的一个重要设计原则:天线的设计要配合系统整体方案,背板材料选择、内部空间规划等都会对天线的设计起到决定性作用。

小器件大创新,分立天线工艺不断进步

犹记得模拟通信的“大哥大”时代,手机天线也以霸气的外置形式存在,直到1999年,诺基亚3210才首次做到了将天线内置。

029ednc20170825

目前主流的内置分立天线工艺主要有FPC(Flexible Printed Circuits,柔性电路板)、LDS(Laser Direct Structuring,激光直接成型)。

FPC是一种具有高度可靠性的可挠性印刷电路板,主要特点是轻薄、弯折性好。在iPhone 3GS和之前的产品设计中,一直使用了FPC天线搭配支架的设计。

030ednc20170825

相比更为传统的的金属弹片配合塑料支架的设计,FPC天线可以缩短研发周期,具有较低的模具开发成本,同时由于FPC板上的金属图案易于修改,因此具有更好的设计灵活性,易于满足现代通信系统多模多频的需求,因此FPC天线在功能机向智能机发展的大潮中得到了广泛应用。

031ednc20170825

LDS天线是利用激光镭射技术,直接在模塑成型的塑料支架上进行化镀,形成金属天线图案。相比FPC天线,LDS天线由于采用了高精度的激光技术,因此性能更加稳定,一致性更好,当然,这也付出了成本更高的代价。此外,当手机使用塑料后盖时,LDS技术可以将天线整体性的镭射到后盖上面,从而大大节约手机内部空间,并且可以防止内部器件干扰。

金属后盖带来的天线挑战,质感提升源自技术创新

随着智能手机的渗透率不断提高,改善型的换机需求逐步替代了曾经的普及型需求,消费者对手机的品质要求越来越高,在苹果的引领下,更具质感的金属后盖成为了中高端智能手机的标配。但是,金属后盖对天线设计却十分不友好,因而手机天线近几年的发展史同时也是工程师与金属后盖不停抗争的血泪史。

本次天线革命源自iPhone 4,苹果对天线方案做了非常激进的改进,机身不锈钢边框被分成两段,分别成为Wi-Fi/BT/GPS天线和通信主天线。不锈钢边框上焊接了性状复杂的金属片,用于在不同通信模式和频段下进行匹配调谐。

然而,如此极富创新精神的设计却由于特定条件下的缺陷,导致了著名的“天线门”事件。苹果用户发现,当紧握手机下部时,会出现信号质量急剧下降的现象。这是由于人体皮肤有可能导致两段天线的连接处发生短路,使天线的频率特性出现偏移。“天线门”迫使乔布斯亲自站台做危机公关,成为人类商业史上的一次经典案例。

032ednc20170825

苹果最终的解决方案是在后续的iPhone 4 CDMA版以及iPhone 4S中将天线改为了三段式设计方案,并且加入了接收分集功能,可以智能选择信号较好的接收天线,接收灵敏度不再受手握的影响。

“天线门”是天线设计史上的一次经典案例,它一方面体现了天线的重要性,如此经典的划时代产品险些由于天线方面的问题提前谢幕,另一方面也体现了天线领域的创新活力,持续不断的技术创新为产品升级提供了原始驱动力。

金属边框天线的成功经验使得金属后盖工艺成为可能,无论是苹果阵营还是安卓阵营,在iPhone 4之后均在中高端机型中大面积使用金属后盖,而对于天线的处理方式,也产生了三种主流方案。

1)以iPhone 5S为代表的三段式后盖结构

这种结构的主要特点是后盖中部为大块金属,顶部和底部使用两条玻璃或塑料材料,为内置天线留出足够的净空。

033ednc20170825

2)以iPhone 6、iPhone 7为代表的纳米注塑工艺

纳米注塑工艺(NMT,Nano Molding Technology)是将金属表面纳米化处理之后,对其进行注塑成型,形成金属和塑料的一体化结构的制作工艺。iPhone 6后盖上的“白带”即为使用纳米注塑工艺加工的塑胶,它的主要作用是将顶部和底部的天线和后盖大块金属隔离,以减小手持对天线接收信号的影响。

以iPhone 6为例,金属后盖经过纳米注塑工艺进行加工后将不同段的金属进行分离,顶部的A段金属和底部的E段金属作为天线使用。其中A天线包括了Cellular副天线、双频Wi-Fi、蓝牙、GPS、NFC等功能。

034ednc20170825

上部天线虽然是一根金属,但通过在中间加入接地馈点,作为多段天线使用,包括UAT1、UAT2、UAT3三个馈电端口和NFC的两个馈电端口。UAT3包括了Wi-Fi 2.4G/BT/GPS/分集天线,UAT2为Wi-Fi 5.8G天线,UAT1主要用来对UAT3进行匹配调谐。

035ednc20170825

底部的E天线主要用作蜂窝通信的主天线,并通过同轴射频线连接到主板,如下图所示。

036ednc20170825

iPhone 7和iPhone 6的天线设计方案类似,主要改变是iPhone 7修改了纳米注塑条的设计,去掉了水平方向的横条,将“D字型”改为了“U字型”,主要目的是为了提高美观度,使得后盖更加浑然一体。

037ednc20170825

近期媒体Techweb爆出的新一代苹果智能手机产品信息显示,新一代iPhone大概率会采用金属中框+2.5D玻璃的整体外观架构,而从金属边框上的纳米注塑带来看,金属边框仍然具有天线功能,继续发挥苹果在金属边框天线上的技术优势。

3)以三星Galaxy C9 Pro和OPPO R9 Plus为代表的微缝天线(Micro Slit Antenna,MSA)

微缝天线是使用高精度刀具在全金属机身上切割出微缝,以阻隔金属的导电效应,然后使用纳米注塑技术填平微缝,保证触感上的平整性。

038ednc20170825

无论哪种方案,使用各种技术的主要目的有三个:1)增加天线周围净空;2)减少用户手持对天线的影响;3)支持移动通信更多频段。最终天线设计落实到产品上面,主要的性能指标为支持移动通信的模式和频段数量,以及接收的信号强度,从目前市场上主流的旗舰手机天线设计水平上看,苹果和三星依然最为优秀,华为在国内手机中水平领先。

039ednc20170825

手机金属外壳的制作主要由CNC数控机床来完成,需要锻压成形-CNC粗铣-纳米成形-CNC精铣-阳极处理-落料几大工序,CNC数控机床的数量决定了企业的产能,目前,全球CNC数控机床产能如下图所示:

040ednc20170825

总结来说,天线在消费电子产品中虽然只是一个非常小的零部件,但其性能却决定了产品整体的用户体验,旗舰机型要求在保证全球移动通信系统全模式全频段的前提下,兼顾外观的整体性和质感。目前来看,还没有出现一种能够完美解决所有痛点的天线技术,而未来5G毫米波、全面屏、音射频一体化和无线充电技术又会对天线设计带来全新挑战,因此天线的创新空间依然非常巨大,产业链上的相关公司正处于卡位战的关键时期,跟踪产业创新发展大势是布局下一阶段投资的基础。

天线市场处于重构期,三大创新改变行业格局

15G提升天线单机价值量,众厂商紧盯毫米波天线蛋糕

从产业链相关调研情况来看,5G的研发正在如火如荼的开展。运营商、设备商和终端厂商目前的目标均是在2020年实现正式商用。按照ITU的规划,5G系统的推进按照研究、标准化和产品化可以分为四个主要阶段:

第一阶段:2016年之前,ITU主要进行针对愿景、趋势和频谱的前期研究工作,而3GPP 将会开展针对过渡性技术方案的研究和标准化工作。第二阶段:2016至2017年,ITU将会定义5G的技术需求和评估方法,而3GPP自Release-14正式开始5G技术的研究工作,这部分工作主要集中在SI(Study Item)阶段。第三阶段:2018年,ITU开始征集5G候选方案,3GPP的工作则会从SI向WI(Work Item)进行转换。在3GPP将于2018年9月发布的Release-15中,将会给出第一版5G技术标准,企业会以此标准为基础进入产品化阶段,5G商用将正式拉开序幕。第四阶段:2019年到2020年,ITU将正式开始5G标准化工作,3GPP将于2019年12月发布Release-16,公布增强版5G标准,主要针对毫米波频段。2020年将进入正式商用阶段。

041ednc20170825

根据ITU的规划,和4G移动网络相比,5G的峰值数据速率将从1Gbit/s提升至20Gbit/s,用户体验数据速度将从10Mbit/s提升至100Mbit/s,频谱效率将由1x提升至3x,支持移动速度将由350km/h提升至500km/h,通信延时将由10ms降低至1ms,设备连接密度(每平方千米)将由105提升至106,网络能量效率将由1x提升至100x,单位面积数据传输能力(每平方米)将由0.1Mbit/s提升至10Mbit/s。

042ednc20170825

总结来说,5G通信网络的技术特点为:更高的数据传输速率、更低的数据传输延时、更高的数据传输密度和更好的高速通信能力。

想要实现相比4G网络20倍的数据传输速率提升,主要的方式有两种,首先是载波聚合技术(Carrier Aggregation,CA)配合MIMO(Multiple-Input Multiple-Output,多输入多输出)技术。简单来说,载波聚合技术是将同一频段或者不同频段中的多个频点组合到一起,实现更高带宽,并不需要多根天线的配合;而MIMO技术是通过基站侧的多根发射天线和接收端的多根接收天线,实现在同一频点上接收多路信号,需要多根天线进行配合。

043ednc20170825

CA配合MIMO在现有的4G方案中已有大规模应用,以高通最新的处理器平台骁龙835为例,在接收链路最高可以支持4x4 MIMO,实现1Gbits/s的峰值下载速率。回顾我们前文图2所示的三星S8中的天线情况,可以看出总共有五根天线用于蜂窝通信,两根主天线、两根分集(Diversity)天线和一根载波聚合天线,其中主天线和分集天线可以组成MIMO模式下的4根接收天线。

044ednc20170825

对比来看,目前市场上大部分的国产手机,用于蜂窝通信的天线只有两根(一根主天线,一根分集天线),还没有进入5G时代时,单机价值量便有了超过一倍的潜在增长空间。

预计在5G时代,智能手机至少会支持8x8 MIMO,保守估计天线数量在8到10根左右,市场潜力巨大。

再看以Wi-Fi为代表的无线连接天线(连接器),这也是国内公司在苹果产品(iPhone、iPad和Mac)中的主要营收来源。从手机方面来看,苹果从iPhone 6S产品开始支持2x2 MIMO Wi-Fi,但从第三方拆机报告中未发现存在两根独立Wi-Fi天线的证据,猜测当Wi-Fi使用MIMO模式时,需要复用一根蜂窝通信天线。

045ednc20170825

反观在iPad产品和Macbook中,由于内部拥有足够的设计空间,因此均使用独立的两根天线以支持2x2 MIMO的Wi-Fi,这也是iPad/MacBook中Wi-Fi天线单机价值量更高的主要原因。

046ednc20170825

从未来的发展趋势上看,随着手机、电视和电脑的屏幕分辨率越来越高,人们对高清内容的需求越发迫切,以及AR/VR等应用的发展需要,为了避免Wi-Fi的下载速度成为影响用户使用体验的瓶颈,消费电子产品中的Wi-Fi天线数量有望进一步增加,单机价值量同样具有较大空间,回顾图2也可以看到三星S8中已经应用了支持MU-MIMO的双Wi-Fi天线。

047ednc20170825

回到5G提高下载速率的问题上,除了按照原有4G路线图进一步发展,即使用更多的载波聚合技术和MIMO技术之外,另外的解决方案便是引入毫米波,利用其高频率大带宽的特点,实现高下载速率。

毫米波通信对于未来的移动终端来说是完全的增量,由于毫米波的频率非常高,存在着空气中传播衰减较快的问题,同样需要前文中提到的波束成型技术来抵抗衰减,因此毫米波天线会采用阵列的方式存在,目前较为前沿的方案多采用4x4或者8x8的天线阵列。同时又由于毫米波的波长较短,天线的特征尺寸在毫米级,因此对制作工艺的精准度要求较高,存在形式也和传统天线不同,由于频率太高,为降低衰减需要减少走线长度,最好的解决方案是和芯片紧靠在一起,甚至不排除未来集成到芯片内部的可能性。

048ednc20170825

对于毫米波天线这一块新鲜蛋糕,无论是传统天线公司,还是射频前端芯片公司(Skyworks、Broadcom和Qorvo等),甚至包括高通这样的基带公司,均产生极大兴趣并不断加大研发投入。在高通于2016年10月发布发X50 5G modem解决方案中,便包括了工作在28GHz频段的毫米波射频收发芯片SDR051,可以整合32根毫米波天线,X50最高下行速率可以达到5Gbps。

049ednc20170825

**外观创新推动高端手机放弃金属后盖,天线独立产生增量市场 **

1.全面屏将成为2017年智能手机最重要的创新方向

全面屏已经成为2017年智能手机领域最重要的创新点,三星Galaxy S8和S8+的发布给消费者带来了较强的未来感,具有明显的视觉冲击力,两款手机均搭配18.5:9的屏幕,屏占比达到84%。

050ednc20170825

在三星之前,夏普作为全面屏技术的先行者已经在14、15年推出了多款产品,但并未引起市场重视。直到2016年下半年,小米MIX(屏占比91.3%)、LG G6(屏占比78%)和联想ZUK EDGE(屏占比86.4%)等几款全面屏产品的惊艳发布终于引起了巨大反响。

051ednc20170825

展望2017年下半年,全面屏手机依然会是各大厂家的发布重点,我们预计各品牌旗舰将会不约而同的使用全面屏,掀起新一轮高潮。三星Note 8、iPhone 8、Vivo X11/plus、OPPO R11/plus、华为 Mate10/pro等可能采用全面屏的重量级产品有望先后亮相。

052ednc20170825

根据集邦咨询的数据,2017年全面屏机种的出货仍然主要由三星和苹果的旗舰机型贡献,整体渗透率约为10%,2018年有望大幅提升至37%,到2020年时全面屏手机的渗透率有望达到55%以上。

053ednc20170825

2.全面屏将成为2017年智能手机最重要的创新方向

全面屏手机为了将屏占比扩至极限,需要尽量缩减手机盖板上的非显示区域,以及显示屏的BM(Black Matrix,俗称“黑边”)区域,最终的理想效果是有效显示区域(AA,Active Area)尽量接近金属边框。

054ednc20170825

但是,在金属后盖手机中,通信天线往往被集成到上下两个金属边框中,由于屏幕背板上面有很多金属成分存在,因此天线的净空会进一步被限制,给设计工作带来巨大的困难,成为重要的技术瓶颈。

另外一方面,金属后盖同时制约着5G毫米波和无线充电技术的应用,主要原因是金属对于电磁能量的传输具有天然的阻碍作用。毫米波方面,由于频率极高,对传输损耗非常敏感,需要尽量缩短芯片到天线的距离;无线充电方面,充电线圈面积较大,且通常位于后盖中心位置。综合来看,具有普适性、顺应时代潮流的方案是采用玻璃或者陶瓷的后盖方案。

综合以上两点,我们的结论是全面屏和无线充电技术将推动手机后盖由金属材质向玻璃或陶瓷转换。这一现象已经在三星S8和小米MIX两款产品上得到了印证,而苹果的iPhone 8同样有望采用双面玻璃加不锈钢中框的外观架构,行业整体趋势已经形成。

055ednc20170825

3.后盖“去金属化”利好LDS天线厂商,音射频一体化市场格局未定

在手机后盖改为玻璃或者陶瓷之后,原有做在金属边框中的天线将会独立出来,从三星S8和小米MIX的解决方案上看,均采用了LDS天线制作工艺,在塑料支架上制作天线。没有了金属后盖的限制之后,LDS天线既可以单独充当天线,也可以配合金属边框充当天线。

056ednc20170825

我们预计,在未来的手机中,会广泛采用这种方案,天线逐步从金属边框中独立出来,无疑会为LDS天线供应商带来新的机会,信维通信、硕贝德、立讯精密、光韵达、安费诺、Molex和Tyco等厂商均会迎来新的发展机遇。

同时,这种方案也会推动音射频一体化的发展趋势。为了节省内部设计空间,手机下部独立出来的天线最好的解决方案是和扬声器模块集成到一起,需要解决的关键问题是相互之间的干扰。

057ednc20170825

音射频一体化的趋势已被业内认可,射频龙头(如信维通信)和声学龙头(如AAC、歌尔股份)均做了重点布局,但最终谁能胜出,还要依靠和产品竞争力和市场表现去检验。

**无线充电渗透率快速提升中,国内厂商已进入三星、苹果产业链 **

无线充电技术在消费电子设备中已经被三星阵营和苹果阵营广泛应用,三星从S6/S6 edge便开始支持无线充电功能,苹果Apple Watch同样支持无线充电,并准备在新一代手机产品中大规模应用。无线充电技术主要解决消费者必须随身携带有线充电器和手机由于充电接口的存在防水性能难以提升两个痛点,长期看是智能设备的重要创新元素,并且会推动家居等行业的变革。

058ednc20170825

根据市场调研机构Markets-and-Markets的数据,预计2014-2020年全球无线充电市场复合增长率将超过60%。IHS则认为2016年支持无线充电技术的设备出货量超过1.2亿组,至2024年出货量将超过20亿组;同时,无线充电市场将从2015年的17亿美元,快速增长至2020年的125亿美元左右,而到2024年,这一数字则有望达150亿美元。

根据能量传输方式的不同,无线充电可分为三类:磁感应式、磁谐振式和微波传输式。其中微波传输式对接收和发射器之间的方向限制非常严格,并且受传输介质影响衰减较大,效率较低,主要应用于传输距离较远、传输功率较小的场景中。

近距离无线传输方案以磁感应式和磁谐振式为主,曾经有WPC、PMA和A4WP三大阵营,2015年1月后两大阵营合并为AirFuel,但从目前的发展状态看,仍然是WPC占据绝对优势,其Qi方案目前应用最为广泛。

059ednc20170825

WPC成员包括微软、松下、三星、索尼、东芝、LG等,其推出的Qi方案基于磁感应耦合原理,通过发射端和接收端两个靠近的线圈共享磁通量的变化,完成直流电-交流电-直流电的转换过程。Qi标准目前占据市场主流地位,普及率最高,被智能设备厂商大量采用。

060ednc20170825

Qi无线充电标准工作频率通常在100KHz至360KHz,目前充电功率可以达到15W,充电效率可以做到85%,已经接近有线充电的90%,技术上已经具备大规模应用的基本条件。

061ednc20170825

以三星S8采用的方案为例进行深入分析,首先看发射端,三星S8提供无线充电附件供消费者进行选择,内部主要由电能转换芯片和发射线圈构成,芯片方面采用了IDT(Integrated Device Technology)的整体解决方案,最大发射功率达到9W,发射线圈采用了三线圈的方式,以在充电位置上提供更高的灵活性。

其次看接收端,芯片方面同样采用IDT方案。天线模组方面,将NFC天线、MST线圈和WPC无线充电线圈集成在一起,单机价值量在3.5美元到4美元左右,信维通信目前已经切入三星供应链,占据了一定份额,我们认为未来有望继续提升。

062ednc20170825

苹果产业链方面,立讯精密占据了Apple Watch无线充电线圈的主要份额,并有望延伸至新一代苹果手机的无线充电模组中,有可能占据发射端的全部份额和接收端的大部分份额。东山精密则借由收购美国FPC电路板制造商M-Flex,有望占据一定的接收端线圈份额。而在芯片方面,从目前产业链调研的信息看Broadcom方案处于领跑位置。

我们认为,苹果新一代手机中加入无线充电功能将对整个产业链产生巨大的催化作用,会有越来越多的国产手机和可穿戴设备进行跟进,同时整个无线充电的生态环境会逐步改善,会有越来越多的公共场所提供无线充电服务以增强客户粘性,充电“无尾化”革命继续进行。

063ednc20170825

从国内无线充电产业链角度看,核心器件中芯片的技术壁垒较高,暂时难以直接切入,在传输线圈方面国内公司已经占据了一席之地,除了上文提到的信维通信、立讯精密和东山精密之外,顺络电子满足Qi标准的发射、接收线圈已经获得了IDT和NXP的无线充电方案认证,并且已经进入了华为的供应体系,硕贝德同样推出了无线充电相关产品。磁性材料方面,目前TDK、村田等国际巨头公司具有较强优势,国内相关企业则有横店东磁、天通股份等。

064ednc20170825

推动天线市场变革的三大动力

天线由于在电子产品中的存在形式较为隐蔽,同时单机价值量相对较低,成为经常被忽视的电子元器件。根据IDC的数据,2016年全球智能手机出货量约为14.7亿台,平板电脑出货量约1.75亿台,笔记本出货量约1.7亿台,可穿戴设备1.01亿台,在这些设备中存在着蜂窝通信、Wi-Fi、BT、GPS、NFC和无线充电线圈等多种天线形式。

天线设计与手机外观设计联系紧密,过去几年创新紧密围绕金属机身设计。金属合金机身由于其外形美观、富有光泽和质感、抵抗划痕能力强等优点,在过去几年成为智能手机的主流发展方向。而天线设计成为全金属机身应用的主要瓶颈,苹果自iPhone 4起应用的金属边框天线成为主流选择,多种技术方案被提出以克服天线净空、手持干扰和频段覆盖等问题。在这个过程中,天线的价值量被集成至金属外壳中,对传统的FPC/LDS天线供应商业绩产生一定的负面影响。

站在当前时间节点,我们认为天线市场将迎来新一轮的重要变革期和市场重构期,主要的推动力有三个:

5G商用将对天线单机价值量产生明显拉动效应。5G的发展是平缓的产业升级过程,目前正处于4.5G阶段,但对天线的价值量拉动效应已有体现。从三星S8和华为P10的天线设计看,蜂窝天线共有4至5根,支持4x4 MIMO,相比以前的一主一副2根天线数量上有明显提高。5G时代MIMO有望扩展至8x8,并且毫米波天线阵列会形成全新的价值增量。另外,手机Wi-Fi天线也会向MIMO方向演进,单机价值量同样存在一定提升空间。

全面屏、无线充电和5G毫米波推动手机外观创新,独立天线有望长期受益。全面屏由于力求将有效显示区域贴近手机边框,将会进一步压缩天线的净空设计空间,增大金属边框作为天线的设计难度。同时,金属后盖不利于无线充电和毫米波的应用。玻璃和陶瓷替代金属后盖将是未来的大趋势,从三星S8(3D玻璃后盖)和小米MIX(全陶瓷后盖)的设计看,均使用了LDS工艺制作的天线,价值量逐渐从金属边框中剥离,利好传统天线厂商。

无线充电应用扩大天线整体市场空间,国内企业已进入一线巨头产业链。三星从S6便开始推广无线充电功能,并且模组同时集成了NFC天线和MST线圈,根据媒体报道苹果在Apple Watch支持无线充电后,也有望在新一代手机产品中加入这一功能,行业处于爆发前夜。国内企业中,信维通信和立讯精密已经在一线巨头的产业链中处于领先地位。

在产业内多种技术变革正在进行的大趋势下,我们认为终端天线市场将迎来重构,传统的FPC/LDS天线供应商有望迎来新的机遇。

(节选自海通电子研究)

20160630000123