广告

一文看懂极紫外光刻的发展现状

2019-08-02 林育中 阅读:
一文看懂极紫外光刻的发展现状
由于雷射光发生的机制较为复杂,以及对解像度有更髙的要求,使得目前的EUV状况不尽如人意。先做个总结,堪用、但尚有很大的改善空间。

1996年底,一具甫抵桃园机场的深紫外光刻(DUV)步进机被特殊载具以每小时低于10公里的龟速运至园区三期,三期中的柏油路是特别为载运机台协调园区管理局刚铺好的,这速度和路况是设备公司的技术要求。这是台湾第一台DUV机台,用于0.35μm制程,这当然只是牛刀小试。4Egednc

005ednc201908024Egednc

图为准分子雷射机台。IoOALP4Egednc

又过了近1/4世纪,光源从KrF的248nm走过ArF的193nm,平台从步进机走到扫瞄机,加上浸润式微影的技术和制程上的重复曝光等工程手段,波长193nm的光刻机居然也支撑到7nm的技术节点,比理论上解像度只有半波长的极限足足又推进了十几倍。4Egednc

台积电在N7+、三星逻辑在7nm启用极紫外光光刻(EUV),三星在DRAM 1z制程、海力士和美光于1α制程也采用EUV。看来EUV要进入先进制程的主流了,但其实还有一票工程问题待改善,最主要的原因是虽然DUV和EUV都是雷射光,但发光的机制很不一样。4Egednc

DUV一类的雷射叫凖分子雷射(Excimer laser),基本上是受电场激发的惰性气体与卤族元素形成一生命期极短的二聚体(dimer,又译凖分子),当被同时触发电子耀迁时就放出雷射光。EUV的机制比较复杂,它内部有CO2雷射,再用这雷射两次轰击钖液滴(tin droplet)电浆,钖液滴是由液滴发生器(droplet generator)产生的。当它第一次被CO2雷射轰击,液滴变成较扁平的状态;第二次轰击的时候,再激发出电浆雷射,这样同步诱发的雷射波长为13.5nm。4Egednc

由于雷射光发生的机制较为复杂,以及对解像度有更髙的要求,使得目前的EUV状况不尽如人意。先做个总结,堪用、但尚有很大的改善空间。4Egednc

目前throughput的表现是在曝光量250W时为155wph(wafer per hour)。影响机台可靠性最大的因素是锡液滴发生器,目前只能连续使用1,000小时,每次更换时间比一天稍长。虽然这比原型机已有大幅的改善,但还有改善的空间。目前机台的up time在70~85%,与其它种类机台正常的up time还有段距离。要达到95%的up time目标,更换液滴发生器的时间要缩短至8小时以下,它的寿命也得再延长。另外还有一些设备和制程的工程要素要改善,譬如光罩薄膜(mask pellicle)洁净度的维持、光源反射器洁净度的维持、曝光功率的提升—意味着throughput的提升、EUV光罩上光阻抗反射镀膜(Anti-Reflective Coating;ARC)和吸收层(absorber)呈现出3维的效应-这是极小尺度才需考虑的事。4Egednc

最有趣的是提髙数值孔径(Numerical Aperture;NA)后对设计芯片连动的效应。光学系统的解像长度和波长成正比、和NA成反比,NA提升镜头的解像长度也会跟着微缩,这是所有微影光学戮力以求的目标。EUV未来打算把NA提升到0.55,但是为了避免光罩上因为3D效应产生的阴影,镜头的放大倍率必须从原来x/y方向的x4/x4倍变成x4/x8倍。但是这样一来,可用的晶粒面积大小会变成一半(记得扫瞄机是把光罩上的图形「缩小」到晶圆上!)。这意味着以前要把所有功能模块都集中在一块芯片的企图会受到约束,大芯片的时代快结束了!这间接会促使小芯片(chiplet)的技术趋势变得更为必要。4Egednc

  • 中国的新原理光刻机啥时候能投入量产?
本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 会“IPO“还是”被收购“?Kioxia的技术到底强在哪里?在 尽管存储巨头们心中都期盼更紧密的整合,但如Kioxia若收购成功,日本似乎就没有留下什么大的存储公司,全球闪存业务掌控在美/韩两国手中也震动行业竞争格局与发展,最可能出现的结果可能还是希望Kioxia在适当的节点进行IPO吧
  • 拆解小米 11 Ultra :对比三星 Galaxy S21 Ultra、华为 在3月29日的小米发布会上,小米 11 Ultra 正式亮相,售价 5999 元起,搭载高通骁龙888处理器,首发 50 MP 的三星 GN2 超大底主摄。这款被小米官方称为“安卓之光”的高端旗舰的内部构造和整体品质如何?近日视频网站上出现了关于小米 11 Ultra 的拆解视频。
  • 拆解小米33W氮化镓快充充电器,79元值吗? 上周EDN发表了一篇对比苹果20W PD快充与小米33W氮化镓快充充电器的文章,有读者留言表示:没开拆,略显失望。作为资深的电子设计媒体,怎会让粉丝失望呢,这不,小米33W氮化镓快充的拆解来了!
  • 手工拖焊技术这样练! 拖焊技术是在五步焊接法的基础上改进而来,是专门为电子爱好者用万能板制作电子作品而使用的。只有拖焊技术成熟了,焊接出来的电路板的电气性能才稳定、可靠。作为一个电子初学者,这是必须掌握的实践技能之一。
  • 拆解三星EUV工艺的D1z内存,发现一些技术细节 三星电子发表了分别采用氟化氩浸润式微影(ArF-i)工艺与EUV微影技术的D1z DRAM,TechInsights的拆解分析有一些"新发现",并确认了该技术的一些细节。
  • Nexperia扩展LFPAK56D MOSFET产品系列,推出符合AEC-Q10 节省空间的LFPAK56D半桥产品可以帮助动力系统、电机控制和DC/DC应用减少60%的寄生电感并改善散热性能
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了