广告

详解比亚迪“海豹”的黑科技dTCS,核心技术还得靠博世?

2022-06-13 14:25:54 Notsofat 阅读:
刚刚过去的粤港澳大湾区车展上,比亚迪展台当属人流量最高的展台之一,其展出的限量版千山翠“汉”,以及海洋系列旗舰车型“海豹”也是大家关注的焦点。相比去年试水八合一电驱总成的海豚,海豹上自然有更多黑科技的东西,比如dTCS和iTAC这两项技术。本文就先聊聊dTCS这项技术。

刚刚过去的粤港澳大湾区车展,人山人海的比亚迪展台上最靓的两个仔,一个是魔幻天幕下的限量版千山翠“汉”,另一个是神秘深海里的海洋系列旗舰车型“海豹”。fChednc

作为比亚迪e平台3.0的最新旗舰车型,相比去年试水八合一电驱总成的海豚,海豹上自然有更多黑科技的东西,比如dTCS和iTAC这两项技术。fChednc

fChednc

本文就先聊聊dTCS这项技术。fChednc

dTCS

dTCS全称是distributed Torque Control System,意指分布式扭矩控制系统,或者可以认为是分布式牵引力控制系统,跟已有技术TCS的重点区别在于这个“d”,也就是分布式。fChednc

那么先简单解释一下什么是TCS,然后再看dTCS。fChednc

TCS的重点是牵引力控制,轴上牵引力;与之对应的ESP重点在于制动力控制,轮上施加制动力。fChednc

根据车辆动力学、摩擦理论、轮胎摩擦学等等,当驱动力过大的时候,会造成打滑,轮子空转。fChednc

——你可以想象在冰雪路面,踩大油门起步,车子打滑,不仅不走,还可能原地打转。或者本人驾驶法拉利812、布加迪威龙、迈凯伦P1等一众猛兽,在发令旗挥下之前,全力轰油门导致起步就原地打转烧胎的惨痛经历(咳咳,你知道我在说极品飞车)fChednc

驱动力过大带来的后果是:能量浪费、失去转向能力、降低动力性、降低安全性、烧胎、差速器损坏等。fChednc

TCS的控制原理

TCS是套控制系统,一般放在ESP控制器,或者类似比亚迪的IPB控制器中。fChednc

简单来说就是通过四个车轮上的轮速传感器,辅以底盘控制器的其它信号,比如加速度,方向盘转角等,对车轮的滑移率进行计算,然后根据目标滑移率(通常是12%~20%之间,在此区间内轮胎所能提供的抓地力最大,也就是驱动效果最好,同时还兼顾了控制响应的延时,不能太极限),计算出驱动部件的转速控制目标△n,进而计算出扭矩控制目标△T。fChednc

有了△T,整车控制器VCU经过一轮计算和仲裁,响应TCS系统给的这个△T,去控制驱动系统的输出扭矩(不管是电机还是发动机),通常是需要降低扭矩;对于四驱车来说可以搞前后扭矩分配,在保证整车的动力不降低或者少量降低的情况下,减少打滑。fChednc

——上面的一通原理,简单来说,就是TCS主要通过轮速判断打滑,然后告诉VCU,VCU再告诉电机控制器MCU,MCU控制电机的扭矩,以减少打滑。下面是系统简图,为便于理解,做了简化。fChednc

fChednc

dTCS的控制原理

跟TCS的那套控制逻辑类似,但更快更强。fChednc

按照比亚迪的官方宣称,扭矩响应闭环时间,从原来的100ms,提升到甚至10ms,直接是10倍的效果提升。fChednc

fChednc

图片来源:比亚迪公开材料fChednc

但真的是这样的吗?需要扒开来看。fChednc

按照宣传材料,原有的扭矩传递路径是:IPB->VCU->MCU->电机->车轮fChednc

(IPB是博世新的底盘控制器,类似ESP控制器的升级版,TCS这套软件放在IPB控制器里面);fChednc

比亚dTCS,改进之后的扭矩传递路径是:IPB -> MCU -> 电机 -> 车轮fChednc

如果我们从控制理论的角度来看,整个控制环路上,减少了信号到VCU、VCU计算和仲裁、VCU再输出给MCU的过程,从IPB来的控制信号直接给到了MCU,由MCU去控制电机。仅仅省掉VCU的环节,就能提升10倍的响应速度吗?从TCS模块算完,到传递给VCU的过程,只有20ms(比亚迪图上给的数据),如何能带来100ms->10ms的改变呢,这个是不是有些夸大的成分?fChednc

——以上简单来说,dTCS只是省掉了控制环路的一个环节,对于系统控制效果提升到何种程度存疑。fChednc

单从比亚迪的宣传材料,无法找到答案,毕竟作为卖车的,我只需要宣传它多牛逼就行了。但是作为卖技术的博世不能不吱声,于是从博世的材料里面,我找到了答案(但很遗憾,有博世logo的东西不方便放上来):fChednc

整个dTCS控制的基石,基于滑移率的扭矩控制算法,还是在博手上fChednc

我们还是按照一个简化的系统控制图来看,以便理解:fChednc

1.这里先单看一个电驱。fChednc

2.IPB中核心的基于轮胎打滑和滑移率目标,计算目标扭矩的模块,姑且叫做Tq Target(实际上模式好像叫做DMD),从IPB中拿出来,放到了MCU中。fChednc

3.IPB把上面提到的△n发给MCU,MCU中的Tq Target来计算△T,然后MCU根据△T来控制电机扭矩。fChednc

4.Tq Target是博世开发,推测应该是黑盒交付(意思是保密,只给成品,不给源代码),毕竟是看家本领fChednc

5.比亚迪和博世联调fChednc

——简单来说,控制算法主要还是博开发,比亚跟博一起调试,让控制路径更短,达到好上加好。fChednc

fChednc

这里重点要想清楚的是,Tq Target放进MCU之后,不是简简单单的功能下放,背后是对于电机扭矩控制的更快更高效。因为被控对象并非指哪打哪,控制的实现有一个过程,只不过因为电机响应太快,我们主观上以为它是指哪打哪,实际上考虑到超调、舒适性、稳定性等,总会有偏差的存在。fChednc

而如果控制链路延长,这种偏差会被成倍地方大,控制系统趋于稳定需要的时间也会更长。fChednc

比如,在通过IPB->VCU->MCU->电机,这种方式来控制,在t1时刻,VCU发出的电机目标扭矩是Tq_t1,但实际上电机收到指令后,给出的实际扭矩是Tq_t1_actual;Tq_t1_actual会给车轮带来新的影响,反馈到TCS系统,TCS再计算,反馈给VCU,于是在t2时刻,VCU又给了一个新的扭矩指令Tq_t2,再传递给MCU;从t1~t2时刻,电机的扭矩目标是基于前一个时刻的实际扭矩和车辆表现给出的,但等到去控制电机的时候,无论是被控对象电机,还是最终影响的车辆状态,都已经发生改变。fChednc

——一句话,控制链路越长,控制效果越差。比亚dTCS看似改动了小步,实际上使控制效果提升了一大步。就像是一条绳子一端挂了一个球,当你甩动的时候,这条绳子越长,绳子另一端的球越不可控,或者达到可控需要时间越长。fChednc

fChednc

按照比亚迪dTCS的思路,在t1时刻的电机扭矩控制目标,可以在MCU-电机的内部实现快速闭环,也就是它宣城的1ms,实际上1ms仅能实现电机扭矩控制,但还不是精确地达到目标,1ms有些夸张。fChednc

总结一下,dTCS关键的改进和亮点在于这两点:fChednc

缩短信号传递路径fChednc

电机的扭矩实现路径变短 fChednc

达到的效果:降低时延,优化控制效果 ->提升系统快速响应和安全性fChednc

上面这个dTCS系统的解析图,仅仅是画了一个电驱的情况,对于前后双电机,比亚迪更没有说,不妨留给读者思考一下,怎么去协调。fChednc

这次先把dTCS的写了,后面再对iTAC做个详细解读。fChednc

笔者题外话:你觉得这个dTCS怎么看?是比亚迪牛逼666,还是核心技术还是得靠博世,比亚迪还得继续努力?或者,dTCS至少是一个创新?咱们聊起来fChednc

(本文授权转载自知乎,作者:Notsofat;原文链接:详细解读比亚迪两个猴赛雷的靓仔技术,dTCS和iTAC (一),转载请注明出处)fChednc

责编:Demi
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 数据显示,苹果M2 GPU性能比M1高50% Apple M2的第一个 CPU 和 GPU 基准测试已经发布,数据显示,M2芯片单核和多核跑分比M1芯片有所提升,而GPU方面M2芯片优势更加明显。
  • 蔚来的全栈自研ICC到底有啥不同? 日前,NIO Innovations 蔚来创新技术沙龙活动在线上推出国内首个全栈自研的智能底盘域控制器ICC,引发热议。有网友称没想到新势力造车企业竟然能掏出这么硬核的技术,并称谁说电车操控性能不如油车?但同时不乏发出质疑的网友,并直指蔚来吹牛。
  • 纯视觉自动驾驶更安全?美国交通部发布数据打脸特斯拉 特斯拉的纯视觉自动驾驶到底效果如何?真的如马斯克所说的:“通过摄像头和计算机网络让自动驾驶比人类驾驶更安全”吗?近日美国国家公路交通安全管理局发布了一份新的数据,颇有打脸特斯拉的意味。
  • MIT曝光Apple M1 芯片新硬件漏洞:可被无痕攻破 尽管苹果最近发布的 M1 芯片号称Apple 迄今为止功能最强大的芯片,并具有行业领先的能效,但最近,麻省理工学院计算机科学和人工智能实验室(CSAIL)的科学家发布了一项研究称,他们发现了一种可以绕过 Apple M1 CPU 上的指针验证机制的新型硬件攻击……
  • 东京工业大学要在空中同时传输5G和电力 东京工业大学的研究人员创造了一种同时传输电力和 5G 信号的设备。这款 5G 网络信号收发器采用全无线供电,在大距离和角度下具有高功率转换效率。
  • 一种具有触觉感应能力的仿生弹性机器人皮肤 科学家认为,给社交机器人安装类人体皮肤(或触觉传感器),可以实现安全、直观和接触丰富的人机交互。然而,现有的软触觉传感器存在一些缺点,如结构复杂、可扩展性差、易碎,这限制了它们在机器人全身皮肤上的应用。韩国科学技术高等研究院的一组研究人员与麻省理工学院的一位研究人员和斯图加特大学的另一位研究人员合作,开发了一种具有触觉感应能力的仿生弹性机器人皮肤。
  • 每秒可对近20亿张图像进行处理分类的“超级芯片” 在测试过程中,该团队制作了一个尺寸为 9.3 mm 2(0.01 in 2)的芯片,并将其用于对一系列类似于字母的手写字符进行分类。在对相关数据集进行训练后,该芯片能够对包含两种字符集的图像进行分类,准确率达到 93.8%,对四种类型的图像进行分类准确率为 89.8%。
  • 高考数学为何能带手机入考场作弊?信号屏蔽器出了什么问 近日,高考数学全国乙卷“疑似出现泄题”相关话题立即一度冲上热搜第一,引发高度关注!这些年,监考手段也在飞速升级:民警全程押送高考试卷,考点指纹认证、人脸识别双保险,安装反作弊设备屏蔽信号等,在如此严密的反作弊手段下,唐某某的手机是怎样带进入考场的呢?考试场地未组装信号屏蔽器吗?手机信号屏蔽器为什么没有具有阻隔数据信号的功效?
  • 欧盟宣布2024年统一USB-C接口标准,或对苹果造成打击 据EDN电子技术设计了解,欧洲议会和理事会谈判人员日前同意了一项拟议的欧盟法律文本,该法律对在欧盟销售的智能手机、平板电脑和笔记本电脑实施标准充电器,这对苹果来说是一个打击。
  • 2022年面向物联网的热门无线网络——第二部分:非蜂窝方 虽然蜂窝技术(主要是4G和5G)可以满足大多数无线应用的连接需求,但考虑到成本、可用性、隐私和功耗等因素,许多组织都在寻找其他可能性。
  • 纸基半导体可用于更安全的一次性电子产品! 事实上,电子废物仍然是一个日益严重的问题,尤其是考虑到制造电子废物所需的大量稀有元素(如铂、金和钯)。
  • 国产航电系统迎来突破,100%全自主研制的HKM9000 GPU通 当前国产大飞机的其他部件都可以做到自主可控,只有在航电系统和动力系统方面,还显得不足,需要和国外的厂商进行合作。但是就在近日,国产航电系统也迎来了突破。据中国航空报报道,航空工业计算所翔腾微电子公司自主研发的HKM9000 图形处理器转入适航认证阶段。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了