广告

基站停电,后备电源耗尽!怎么办?

2020-06-26 13:03:37 中兴文档 阅读:
通信基站都会面临交流电停电的情况,所以都会配备蓄电池以备不时之需,而蓄电池做为后备电源供电时间是有限的。若在蓄电池电量放电过程中,交流电未能及时来电,会面临两个严重问题……

基站停电问题严重

通信基站都会面临交流电停电的情况,所以都会配备蓄电池以备不时之需,而蓄电池做为后备电源供电时间是有限的。若在蓄电池电量放电过程中,交流电未能及时来电,会面临两个严重问题:PuNednc

1、重要主设备断电后果很严重PuNednc

若基站中某些重要主设备断电,会造成严重后果,比如:若传输设备停电,将影响传输环网,导致大部分区域基站传输中断,造成更严重的通信故障。PuNednc

2、蓄电池过放对电池寿命伤害巨大PuNednc

电池过放对其寿命损害巨大,而且不可逆!下表展现了某蓄电池放电深度与其寿命的关系。PuNednc

PuNednc

由上表可知,蓄电池放电深度过大,会严重影响其使用寿命。蓄电池售价高昂,应避免蓄电池过放。PuNednc

因此,如果基站交流停电后,在蓄电池供电过程中,交流电未能及时来电,基站设备下电从而造成业务的损失不可避免。我们没办法避免业务损失,但可以通过对蓄电池的科学管理,减少业务的损失和对蓄电池的损害。PuNednc

于是,基站通信电源的一次下电和二次下电功能应运而生。PuNednc

什么是一次下电和二次下电

基站主设备按重要性可分为:重要主设备(如:传输设备)和次要主设备。当市电停电后,若想保证蓄电池能对重要主设备供电时间更长,只有一个办法:切断对次要主设备的供电。PuNednc

PuNednc

我们将这种在蓄电池供电过程中,第一次切断给次要主设备供电的动作叫做一次下电。说人话就是:蓄电池不够用啦!给相对不太重要的主设备统统断电。因为是第一次,所以叫一次下电啦!PuNednc

那么,什么是二次下电呢?PuNednc

一次下电后,蓄电池接着放电,但是,有的时候,蓄电池放电至接近放电深度警戒线了,交流电还没有来电!PuNednc

为了保证蓄电池不因过放而造成巨大损害,于是通信电源第二次切断了给重要主设备供电的供电分路。说人话就是:蓄电池不跟你们玩啦,统统都断电!PuNednc

那么,一次下电和二次下电在电源系统中是如何实现的呢?PuNednc

一次下电和二次下电的实现机制

首先我们来了解两个特性:PuNednc

1、蓄电池特性PuNednc

蓄电池在放电过程中,蓄电池端电压会按规则下降,因此通过测量蓄电池端电压便可大致了解蓄电池所剩电量。利用这一特性,通信电源的CSU(集中管理单元)可大致了解蓄电池电量。PuNednc

2、直流接触器特性PuNednc

直流接触器是一种电子器件,它有一个特性:给直流接触器加电,其状态(闭合或断开)会发生变化。加电前,直流接触器常闭触点闭合,如下图所示。PuNednc

PuNednc

加电后,线圈有电流流过产生磁场,静铁芯吸引动铁芯,并带动动触点与常开触点吸合。直流接触器状态由闭合转化为断开,如下图所示。PuNednc

PuNednc

利用这一特性,直流接触器常被用做直流电路中的自动开关。PuNednc

通信电源正是利用上述两个特性来实现一次下电和二次下电的,实现步骤如下:PuNednc

1、通信电源的CSU实时检测蓄电池端电压,一次下电分路和二次下电分路的两个接触器闭合,一次下电分路和二次下电分路供电正常。PuNednc

PuNednc

2、市电停电后,蓄电池放电,当蓄电池端电压低于一次下电电压值(可在CSU中进行设置)时,CSU断开对一次下电分路接触器的供电。一次下电接触器断开,所有次要主设备断电,完成一次下电。PuNednc

PuNednc

3、一次下电后,蓄电池继续放电,当蓄电池端电压低于二次下电电压值(可在CSU中进行设置)时,CSU断开对二次下电分路接触器的供电。二次下电接触器断开,所有重要主设备断电,完成一次下电。PuNednc

PuNednc

下电进阶

你现在是否认为自己已经掌握了一次下电和二次下电功能了呢?但如果有人跟你说,我测试到电池端电压并没有达到一次下电电压,为神马进行了一次下电啦?你会不会觉得一定是系统故障啦?PuNednc

答案是否定的,因为你还没掌握下电的高阶知识。其实,蓄电池的端电压并非唯一的一次下电和二次下电条件。PuNednc

有些人觉得下电电压这个触发条件不够直观,希望以电池剩余容量或停电时间这种比较直观的参数做为下电触发条件。PuNednc

  • 所谓电池剩余容量,就是指电池放电过程中剩余的电量百分比。例如:60%,是指当前电池所剩电量为60%。
  • 所谓停电时间,就是指交流停电后累计的时间,例如:60分钟,是指当前交流已停电60分钟。

需要特别说明的是,无论是电池剩余容量还是停电时间目前都是与下电电压一起构成下电触发条件。也就是说,当电池剩余容量/停电时间与下电电压中的一个达到了下电条件,就触发一次下电/二次下电。PuNednc

PuNednc

如何设置一次下电和二次下电

由前文可知,CSU通过检测蓄电池端电压来判断是否下发一次下电和二次下电指令。那么,在CSU中一定有些与一次下电和二次下电的参数,用于支撑CSU的判断。确实如此,下面以中兴通讯的某款CSU为例,介绍有哪些一次下电和二次下电相关的参数(参见下表)。PuNednc

PuNednc

 PuNednc

通过设置上面这些参数,便可设置一次下电和二次下电功能了。比如,我们要设置蓄电池端电压低于45.2V时进行一次下电,只要做如下设置便可。PuNednc

PuNednc

 PuNednc

 PuNednc

结束语

 PuNednc

交流电停电后,如果不能及时来电,会造成业务的损失和蓄电池的损害。因此,对于经常停电的基站,有如下建议:PuNednc

建议配置足够容量的蓄电池,以确保交流电来电前主设备不至于断电。PuNednc

建议配备一台发电机,在市电停电后,能用发电机给通信电源供电。PuNednc

建议做好一次下电和二次下电配置,在交流停电后,尽可能将损失降至最低。PuNednc

责编:Demi XiaPuNednc

(本文来源于中兴文档 )PuNednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何实现最精确的授时和同步? 在为关键基础设施制定PNT解决方案时,运营商必须做出两个最关键的决策:1) 是否应在架构的每一层上部署弹性、冗余和安全性?2) 应采用哪种安全策略?
  • 如何在高压应用中利用反相降压-升压拓扑 对于需要生成负电压轨的应用,可以考虑多种拓扑结构,如“生成负电压的艺术”一文所述。但是,如果输入和/或输出端的绝对电压超过24V,并且所需的输出电流可以达到几安,则充电泵和LDO负压稳压器将会因其低电流能力被弃用,而其电磁组件的尺寸,会导致反激式和Ćuk转换器解决方案变得相当复杂。因此,在这种条件下,反相降压-升压拓扑能在高效率和小尺寸之间达成较好的折衷效果。
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 电化学腐蚀制备新技术发表,“一步到位”制作电池电极 据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。
  • 金升阳汽车电子一站式电源解决方案 金升阳汽车电子一站式电源解决方案
  • 满足车规级、医规级的芯片级DC/DC电源——B0505ST16-W 金升阳推出芯片级隔离电源产品B0505ST16-W5,为高端芯片应用助力。金升阳芯片级电源B0505ST16-W5采用新一代自主研发技术,电路技术和电气性能都有质的提高,在汽车电子等领域,朝着小型化、功能集成化的方向迈进。
  • 实现测试测量突破性创新,采用ASIC还是FPGA? 作为世界创新的幕后英雄,特别是在电子器件和通信技术方面,工程师们要开发测试设备,验证这些新技术,以把新技术推向市场。这些工程师必须运行尖端技术,处理预测行业和创新未来的挑战。在开创未来的过程中,测试测量工程师面临的基础性创新挑战之一,是确定设计中采用专用集成电路(ASIC)还是现场可编程门阵列(FPGA)。
  • 大联大品佳集团推出基于Infineon iMotion产品的冰箱 大联大控股宣布,其旗下品佳推出基于英飞凌(Infineon)IMC101T的冰箱压缩机方案。
  • 低功耗“刚需”加速物联网应用落地,用独特MCU设计的省 低功耗MCU涉及的关键技术和设计挑战非常多,从如何定义系统架构、构建平台和MCU生态系统到数字电路设计,从工艺的选择到模拟电路设计,从可靠性设计到低功耗设计,从应用创新到满足客户各种需求等,每方面都对设计公司提出很高要求……
  • 无线充解决方案 SCT6324X系列是一款高度集成的电源管理IC,能够实现符合WPC规范的无线电源发射器系统的高性能、高效率和成本效益,以支持高达20W的功率传输,适用特定于无线应用程序的控制器或基于通用MCU的发射器控制器。
  • 谈谈智能舱座应用 智能舱座的出现体现了人们对于智能汽车的向往,注重车内感知系统和交互模式,那么随着车内感知系统和交互模式的升级,对车规级芯片的需求与要求日益增长。
  • 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品生态
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了