广告

车辆电压保护——将电压水平保持在限度内

2022-08-04 15:01:31 儒卓力标准产品销售经理EMILIA MANCE 阅读:
车辆中可能会短暂存在高电压,而仅比规定电压高出几伏就足以损坏高度敏感的IC器件。因而针对静电放电 (ESD)、抛负载(load dump)脉冲和瞬变提供充分保护是至关重要的。

现代车辆中的所有车载电子设备都连接到电池和交流发电机(图 1)。车辆交流发电机是一个三相发电机,产生的交流电压通过整流二极管转换为脉冲直流电压,其电压水平的波动取决于当前的功率要求,包括发电机(发动机)的速度和挡风玻璃加热、车灯、信息娱乐系统等设备。7QIednc

我们可以使用稳压器使得车载电压和充电电压尽可能保持恒定,并保护电气系统免受过压影响。它们基本上由大功率齐纳二极管组成。7QIednc

然而,根据车辆的运行状态,许多其他电气故障可能会给电气系统带来负担。例如,启动器可能会出现 8 到 16 V 之间的电压波动,或者继电器的切换和接触引线的松动会带来电压显着增加的非常短暂瞬态事件。如果不加以修正,这些瞬变将会沿着电力线传播,导致单个电子元件和传感器发生故障,或永久性损坏车辆的电子系统。7QIednc

抛负载脉冲具有极高瞬态尖峰电压

最大的威胁是抛负载脉冲,它会给网络带来持续数毫秒的高瞬态能量峰值。交流发电机运行时断开电池,或者腐蚀导致连接不良,便会发生这些情况。然后,由于负载不足,交流发电机将车辆电气系统的电压推升至极高的水平。交流发电机具有高绕组电感,因此需要相对较长的时间(大约是 Transil 脉冲时间的一千倍以上)才可再次稳压调节变化的负载状况。7QIednc

7QIednc

图片来源儒卓力7QIednc

 1:所有车载电子设备都连接到汽车电池和交流发电机7QIednc

7QIednc

 2:几乎所有车辆系统都使用二极管来防止过压7QIednc

ISO 7637-2标准描述了车辆电气系统中可能出现的电压尖峰,分成五种脉冲类型(E1 到 E5),各有不同幅度和持续时间。抛负载脉冲属于 E5类型,它们进一步划分为未带有集中式抛负载抑制保护的脉冲 5a(图 3)和带有集中式抛负载抑制保护的脉冲5b(图 4)。7QIednc

7QIednc

图片来源www.demvt.de7QIednc

 3:未带有集中抛负载保护的抛负载典型波形(ISO7637-2 脉冲 E5a7QIednc

7QIednc

图片来源www.demvt.de7QIednc

 4:考虑集中抛负载保护的脉冲 5b钳位电压 US*因项目而异。7QIednc

为了展示对抛负载的抑制保护功能,机动车辆的电子系统必须通过 ISO 16750 标准 (ISO-16750-2 5b) 中规定的相关测试。在这种情况下,必须使用瞬态电压抑制(TVS)二极管,该器件将 ISO-16750-2 脉冲 5b 的抛负载浪涌限制在最大钳位电压,从而防止损坏车辆的电子设备。7QIednc

集中钳位电压对于其他组件过高

如果交流发电机上或交流发电机中的TVS 二极管的集中式集成钳位电压 US* 太高,而无法确保对下游电子元件进行充分保护,则必须使用具有较低钳位电压的本地TVS二极管。集中式集成 TVS 二极管被旁路或短路,而不会消耗任何负载突降能量。因此,由于较早开始钳位操作,所有抛负载能量都将在钳位电压较低的 TVS二极管上进行耗散。结果是对应于 ISO 16750-2 5a 脉冲的波形(没有集中式抛负载保护)。7QIednc

由于脉冲具有特别高的能量并且可以持续长达 400 ms时间,因此需要具有高能量的 TVS 二极管。儒卓力的产品组合包括来自不同供应商的一系列 TVS 二极管产品,用于符合 ISO 7637-2 标准的二次瞬态电压保护(参见表格)。例如,Littelfuse 的 SLDXX 系列 TVS 二极管可提供所需的能量。它们专门设计用于防止因感性负载切换和发电机负载突降而造成损坏。这些二极管具有出色的特性,从 0 V 到 BVmin 的快速响应时间低于1 ps,其坚固耐用的 P600 轴向引线封装符合行业标准。7QIednc

在选择抛负载保护二极管时,需要根据特定应用而考虑某些参数:交流发电机的内阻 Ri 会导致短路电流 Ipp,而Ipp 乘以钳位电压 Vcl则是抛负载操作必须降低达到的数值,从而得到保护二极管必须处理的功耗数值。7QIednc

本地TVS二极管区域内的集中式钳位电压

另一方面,如果交流发电机中 TVS 二极管的集中式集成钳位电压在本地 TVS 二极管的电压范围内,则应用脉冲 5b标准,即采用具有集中式抛负载保护的方法。然后在本地 TVS 二极管上产生较低的抛负载功率浪涌。在这种情况下,本地TVS二极管的工作电压应略高于集中式钳位电压方案的钳位电压。为此,建议使用Littelfuse 系列TPSMB、TPSMC 和 TPSMD,以及 SZ1SMB、SZP6SMB、SZ1SMC 和 SZ1.5SMC产品。7QIednc

责编:Franklin
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 意法半导体STM32U5系列MCU上新,提高物联网和嵌入式应用 Ajax Systems已使用 新STM32U5 MCU开发下一代无线安保和智能家居解决方案;新STM32U5系列MCU是首款获得NIST嵌入式随机数熵源认证的通用MCU
  • 电池管理系统创新如何提高电动汽车采用率 要在未来实现全电动化,需要进行电动动力总成系统创新,其中包括BMS、车载充电器和直流/直流转换器以及牵引逆变器。这些系统的核心是使电气化成为可能的半导体元件。
  • 使用SiC和GaN创建面向未来的电力电子器件 随着碳化硅(SiC)和氮化镓(GaN)等宽禁带器件的推出,电力电子技术发生了翻天覆地的变化。事实上,这些材料的特性使其特别适合在高压和高开关频率下所运行的应用,并能提供比最先进的硅基功率器件更好的效率和散热管理。
  • 如何大幅提高物联网设备的电池能效 本文探讨了如何使物联网(IoT)设备更加节能。在重点介绍毫微功耗运输模式和睡眠模式的关键作用之前,快速回顾了电池管理。 最后,提供了一种新的解决方案,与传统方法相比,它可以更好地优化电池管理的这两个方面,从而降低功耗水平和电路板空间。
  • 利用无线BMS实现智能电池生态系统解决方案 有关电池创新的新闻往往会突出新的电池封装概念和新材料,它们有朝一日可能能够比当今的锂电池技术储存更多的电量。电池的另一个部分——电池管理系统(BMS)——则往往不为人所知,但却需要跟进并以此来支持电池创新。
  • 软件定义电源让用户可控 传统上,AC/DC电源设计只能针对特定负载和线路条件进行优化。这源于在常用固定频率下的经典模拟控制和简单脉宽调制技术,这些限制通常会导致在极端工作范围内产生更高的元器件应力。
  • 小米预研固态电池技术前景诱人,能量密度突破1000Wh/L 3月1日,小米又宣布预研固态电池技术,通过将电解液替换为固态电解质,不仅能量密度突破1000Wh/L,更大幅提升低温放电性能和安全性,称“有望一举解决手机电池三大痛点”。
  • 胜过齐纳二极管的有源分流限压器 我需要用一个电路来限制某些耗散受限设备的电压。它必须将电压限制在最大1.5V,具有对称限制,能够接受2A的电流,并且在1V时漏电流小于100µA。可以用两个串联的齐纳二极管,阳极到阳极,达到目的,但稳压值为0.8V和2W耗散的齐纳二极管在市场上找不到。
  • 用于GaN HEMT的超快速分立式短路保护 GaN HEMT的保护电路必须比硅基MOSFET中使用的传统短路和过流保护方法更快。
  • 【电驱变革深探】: 从测试角度看800V超充技术下的电驱 市场调研数据显示,超过80%的用户对电动汽车的充电速度和续航里程表示不满,虽然新能源汽车市场在近几年飞速变化,但距离满足消费者心理预期的更高使用需求,尚有较大提升空间。预测数据显示,到2025年,800V SiC的市场占比将达到15%左右;不过在电动汽车全球发展提速的大趋势下,这一预测节点也许会提前到来。
  • LDO的运行困境:低裕量和最小负载 开关式DC-DC转换器可提高电源效率,有些器件的效率可超过95%,但是以增加电源噪声为代价,通常在较宽带宽范围内都存在噪声问题。低压差线性稳压器(LDO)常用于清除供电轨中的噪声,但也需要进行一些权衡考量,其功耗会增加系统的热负载。
  • Gridspertise和意法半导体20年合作新里程,赋能美国等地 意法半导体面向家庭的直接电力线通信(power line communication)通道将用于Gridspertise为美国市场开发的智能电表;赋能终端客户积极参与能源市场转型,促进分布式可再生能源整合和智能能源管理系统发展
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了