广告

会有锂电池技术的摩尔定律吗?

2019-10-01 07:23:24 Larry Desjardin 阅读:
许多人认为,与半导体的摩尔定律类似,电池技术在关键指标上具备固有的增长率(重量能量密度每年增长5~8%),但我们可预期这种情况持续吗?

电池技术革命正在进行中,而且是由锂离子电池所推动。无论是手机、笔记本电脑,还是电动/混合动力汽车,都有机会是以锂离子电池所供电。业界对这项技术的投资很大,2016年这一市场的规模就已达到230亿美元,年度增长率达到17%。k9Vednc

EDN-Commnets-F1-201910.jpgk9Vednc
图1:汽车应用是推动锂离子电池市场增长的主动力。(图片来源:Avicenne Energy)k9Vednc

从图1可以看到,锂离子电池的消费类应用市场增长率相对平缓,而电动汽车与大巴车(包括混合动力汽车)则是推动市场增长的主力。消费类电子应用市场增长持平,应该是由于两个主要因素:数量较大以及平均销售价格较低。k9Vednc

随着电动(包括混合动力)汽车的普及率越来越高,预期瞄准此类应用的锂离子电池市场将持续增长,以MWh计算,复合年均增长率(CAGR)达到17%;以营收计,CAGR则为12% (图2)。k9Vednc

EDN-Commnets-F2-201910.jpgk9Vednc
图2:电动汽车、混合动力汽车、插电式混合动力汽车以及电动大巴对于锂离子电池的需求持续增加。(图片来源:Avicenne Energyk9Vednc

这些应用需要较高的容量重量比(重量能量密度,以Wh/kg为单位),以及较高的容量体积比(体积能量密度,以Wh/L为单位),锂离子电池又是否能够满足呢?k9Vednc

许多人认为,与半导体的摩尔定律类似,电池技术在关键指标上具备固有的增长率(重量能量密度每年增长5~8%),但我们可以预期这种情况得到持续吗?k9Vednc

摩尔定律出自于英特尔联合创始人Gordon E. Moore在1965年发表的一篇论文,它假设在某个给定的单位空间内可封装的晶体管数量每两年大约会增长一倍。该理论的先见之明引人瞩目,而且被大多数高科技企业当作前瞻性预测指标。k9Vednc

不过摩尔定律并非物理定律,如同美国加州理工学院(Caltech)的教授Carver Mead在2005年所言:“摩尔定律实际上与经济学相关,是人们的信仰体系——它不是一种物理定律,而是人类的信仰。当人们相信某件事情时,他们就会集中精力应对而使其成真。”k9Vednc

我认为,这还需要强大的经济需求以及技术倾向,才能实现指数级的演进。CMOS两者兼具,推动了IT与通信的革命,品质因数(figure of merit)是晶体管的数量,这本身也有助于芯片的小型化。k9Vednc

锂离子电池能一样吗?如先前所提,其重量能量密度每年有5~8%的改善,虽然没有像是摩尔定律的每年40%这么高,但无疑也是一种指数式的增长,只是速率比较低。问题在于这种技术本身是否适合这种持续性的演进。k9Vednc

一个有趣的区别是,锂离子电池技术的演进主要是由电芯的不同化学配方所推动。根据学者K. Devaki的演讲数据,如图3所示,橙色的部分代表不同的锂离子电池技术,正在部署与开发中的锂离子电池技术有非常多的种类。k9Vednc

EDN-Commnets-F3-201910.jpgk9Vednc
图3:电池的能量密度在持续增加,但每种技术需要新的化学配方。(图片来源:K. Devaki)k9Vednc

与半导体产业不同,电池产业所面临的问题是需要部署不同的技术而实现相对适度的收益。每一种技术都需要长时间的研发才能实现商业化。k9Vednc

举例来说,磷酸锂铁(LFP)电池在1996年就已经开发,当时美国德州大学发现以磷酸盐制作阴极,能实现较高的额定电流与较长的电池寿命,但直到最近十年内这项技术才得到商业化部署。k9Vednc

然而,电池技术正持续实现更高的重量能量密度和体积能量密度,其中有一些改善是以一种单独的化学配方而线性实现,还有一些是通过新的化学配方而跳跃式实现。而锂离子电池技术的下一次突破,有可能是以锂硫电池和锂空气电池为基础。k9Vednc

如同摩尔定律,这种发展趋势就算一年有5~8%的增长,但也是有实际限制的。我们也很难让一种材料取得每原子超过1电子伏特(eV)的更多能量——粗略计算可达到850Wh/kg。听起来好像不错,但这也只比图3所示的锂钴电池技术的密度高五分之一而已。在现阶段,这只能说是慢动作版本的摩尔定律。k9Vednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Do lithium-ion batteries follow Moore’s Law?。)k9Vednc

本文为《电子技术设计》2019年10月刊杂志文章。k9Vednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Larry Desjardin
Larry Desjardin是Modular Methods LLC公司总裁,这是一家专注于快速增长的模块化仪器行业的咨询公司。Larry 曾任职于惠普(现为Agilent Technologies),担任多个研发和执行管理职位。作为研发经理,Larry 获得了John Fluke Sr. Memorial Award,以表彰他对VXI总线的创建所做的贡献。在2011年退休前,他担任了安捷伦模块化产品运营的总经理。Larry 拥有加州理工学院的工程学士学位和斯坦福大学的电气工程硕士学位。Larry 还为“测试与测量世界(Test and Measurement World)”写了一列“他山之石”专栏。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • iFixit 拆解M2 MacBook Ai:没有散热器,但有用途不明的加 日前,iFixit发表了M2 MacBook Air的拆解视频,表示在M2 MacBook Air 中发现了新增的端口,以及加速度计。
  • 儿童电子学(一):LED 电子是当今的热门话题,许多孩子们也期望了解并掌握这个重要技术的基本原理。本文是一个面向孩子们的基础电子课程,将并以简单有趣的方式教他们基础知识,激发他们的兴趣。
  • “智能家居”未来将可通过呼吸控制操作 凯斯西储大学的研究人员创造了一个简单的原型设备,使用户能够通过改变他们的呼吸模式来控制“智能家居”。这种自供电装置可放入鼻孔,并有可能提高行动不便或无法清晰说话的人的生活质量。如果个人呼吸困难,它也可以编程为医务人员提供自动警报。
  • 为什么步进电机的微步没有想象的那么好? 在使用步进电机设计运动控制系统时,不能假设电机的额定保持转矩在微步时仍然适用,因为增量转矩会大大降低。这可能会导致意外的定位误差。在某些情况下,增加微步分辨率并不能提高系统精度。
  • 一种大功率PCB散热管理的方法 整个电力电子行业,包括射频应用和涉及高速信号的系统,都在朝着在越来越小的空间内提供越来越复杂的功能的解决方案发展。设计人员在满足系统尺寸、重量和功率等要求方面面临着越来越苛刻的挑战,其中包括有效的散热管理,这又从PCB的设计开始。
  • 一个AI程序就可将手机电池增加30% 一项尖端的人工智能开发可以将智能手机的电池寿命延长 30%。这项应用则是利用 AI 分析正在使用的应用程序的 FPS 变化,并试图找到 CPU 和 GPU 处理器的最佳运行频率以适应变化,同时消耗设备中最少的功率和温度增益……
  • 香港科技大学打造出新型耐用氢燃料电池 氢燃料电池发电在很大程度上依赖于一种电催化剂,即主要由昂贵稀有金属铂组成的材料。科学家们一直在努力开发替代品,用更常见和更便宜的材料(如铁-氮-碳)代替铂,但这些材料要么被证明在发电方面效率低下,要么耐用性差。现在,香港科技大学的研究人员开发出一种迄今为止世界上最耐用新型氢燃料电池,而且更具成本效益……
  • 拆解最新款M2 MacBook Pro ,苹果用旧硬件改造的“新” iFixit指出,即使是新款 M2 MacBook Pro 的底盖也与 2020 年推出的版本相同。两款机型的底部均刻有型号“A2338”以及相同的 FCC ID。这意味着苹果只是简单地回收了旧硬件,并在板上安装了新芯片。
  • 雷军官宣自研电池管理芯片“澎湃 G1”,及小米 12S系列 今日(7月1日),雷军在个人微博官宣新的自研芯片——小米澎湃G1电池管理芯片,该芯片将于7月4日与小米12S系列共同发布。此外,还分享了小米电池技术新进展、小米自研FBO焕新存储技术以及最新升级的叶脉冷泵散热技术。
  • 网传:iPhone 14系列是有史以来苹果做出最大调整的系列 据EDN电子技术设计引援外媒igeekphone的消息,今年的iPhone 14 Pro或将会新增一款全新的配色——古铜色,并放出了该配色的渲染图。该消息一出立刻登上热搜。
  • 高容量锂离子电池阴极能量损失的原因 一个来自法国、美国和瑞士的 Skoltech 的国际团队,发现了高容量锂离子电池阴极能量损失的原因。研究成果发表在《自然材料》杂志上。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了