广告

会有锂电池技术的摩尔定律吗?

2019-10-01 Larry Desjardin 阅读:
会有锂电池技术的摩尔定律吗?
许多人认为,与半导体的摩尔定律类似,电池技术在关键指标上具备固有的增长率(重量能量密度每年增长5~8%),但我们可预期这种情况持续吗?

电池技术革命正在进行中,而且是由锂离子电池所推动。无论是手机、笔记本电脑,还是电动/混合动力汽车,都有机会是以锂离子电池所供电。业界对这项技术的投资很大,2016年这一市场的规模就已达到230亿美元,年度增长率达到17%。TOjednc

EDN-Commnets-F1-201910.jpgTOjednc
图1:汽车应用是推动锂离子电池市场增长的主动力。(图片来源:Avicenne Energy)TOjednc

从图1可以看到,锂离子电池的消费类应用市场增长率相对平缓,而电动汽车与大巴车(包括混合动力汽车)则是推动市场增长的主力。消费类电子应用市场增长持平,应该是由于两个主要因素:数量较大以及平均销售价格较低。TOjednc

随着电动(包括混合动力)汽车的普及率越来越高,预期瞄准此类应用的锂离子电池市场将持续增长,以MWh计算,复合年均增长率(CAGR)达到17%;以营收计,CAGR则为12% (图2)。TOjednc

EDN-Commnets-F2-201910.jpgTOjednc
图2:电动汽车、混合动力汽车、插电式混合动力汽车以及电动大巴对于锂离子电池的需求持续增加。(图片来源:Avicenne EnergyTOjednc

这些应用需要较高的容量重量比(重量能量密度,以Wh/kg为单位),以及较高的容量体积比(体积能量密度,以Wh/L为单位),锂离子电池又是否能够满足呢?TOjednc

许多人认为,与半导体的摩尔定律类似,电池技术在关键指标上具备固有的增长率(重量能量密度每年增长5~8%),但我们可以预期这种情况得到持续吗?TOjednc

摩尔定律出自于英特尔联合创始人Gordon E. Moore在1965年发表的一篇论文,它假设在某个给定的单位空间内可封装的晶体管数量每两年大约会增长一倍。该理论的先见之明引人瞩目,而且被大多数高科技企业当作前瞻性预测指标。TOjednc

不过摩尔定律并非物理定律,如同美国加州理工学院(Caltech)的教授Carver Mead在2005年所言:“摩尔定律实际上与经济学相关,是人们的信仰体系——它不是一种物理定律,而是人类的信仰。当人们相信某件事情时,他们就会集中精力应对而使其成真。”TOjednc

我认为,这还需要强大的经济需求以及技术倾向,才能实现指数级的演进。CMOS两者兼具,推动了IT与通信的革命,品质因数(figure of merit)是晶体管的数量,这本身也有助于芯片的小型化。TOjednc

锂离子电池能一样吗?如先前所提,其重量能量密度每年有5~8%的改善,虽然没有像是摩尔定律的每年40%这么高,但无疑也是一种指数式的增长,只是速率比较低。问题在于这种技术本身是否适合这种持续性的演进。TOjednc

一个有趣的区别是,锂离子电池技术的演进主要是由电芯的不同化学配方所推动。根据学者K. Devaki的演讲数据,如图3所示,橙色的部分代表不同的锂离子电池技术,正在部署与开发中的锂离子电池技术有非常多的种类。TOjednc

EDN-Commnets-F3-201910.jpgTOjednc
图3:电池的能量密度在持续增加,但每种技术需要新的化学配方。(图片来源:K. Devaki)TOjednc

与半导体产业不同,电池产业所面临的问题是需要部署不同的技术而实现相对适度的收益。每一种技术都需要长时间的研发才能实现商业化。TOjednc

举例来说,磷酸锂铁(LFP)电池在1996年就已经开发,当时美国德州大学发现以磷酸盐制作阴极,能实现较高的额定电流与较长的电池寿命,但直到最近十年内这项技术才得到商业化部署。TOjednc

然而,电池技术正持续实现更高的重量能量密度和体积能量密度,其中有一些改善是以一种单独的化学配方而线性实现,还有一些是通过新的化学配方而跳跃式实现。而锂离子电池技术的下一次突破,有可能是以锂硫电池和锂空气电池为基础。TOjednc

如同摩尔定律,这种发展趋势就算一年有5~8%的增长,但也是有实际限制的。我们也很难让一种材料取得每原子超过1电子伏特(eV)的更多能量——粗略计算可达到850Wh/kg。听起来好像不错,但这也只比图3所示的锂钴电池技术的密度高五分之一而已。在现阶段,这只能说是慢动作版本的摩尔定律。TOjednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Do lithium-ion batteries follow Moore’s Law?。)TOjednc

本文为《电子技术设计》2019年10月刊杂志文章。TOjednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Larry Desjardin
Larry Desjardin是Modular Methods LLC公司总裁,这是一家专注于快速增长的模块化仪器行业的咨询公司。Larry 曾任职于惠普(现为Agilent Technologies),担任多个研发和执行管理职位。作为研发经理,Larry 获得了John Fluke Sr. Memorial Award,以表彰他对VXI总线的创建所做的贡献。在2011年退休前,他担任了安捷伦模块化产品运营的总经理。Larry 拥有加州理工学院的工程学士学位和斯坦福大学的电气工程硕士学位。Larry 还为“测试与测量世界(Test and Measurement World)”写了一列“他山之石”专栏。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 摩擦起电会是能量采集的下一个来源吗? 我们为何不持续寻找一种新的能量采集方式?因为它通常是免费的(忽略前期成本)、方便,并解决了许多实际的安装/更换问题。但是在能量达到可以采集之前,电子和负载方面有两个前端问题需要解决…
  • 猎户星空当选WISE2020中国新经济之王“最具影响力企业 在服务机器人领域,猎豹旗下的猎户星空凭借自研的语音OS和 Robot OS、导航、云端大脑等过硬的研发实力,2019年开始发力,2020在新冠疫情中转危为机,在商场、医疗、政务等20多个领域进行了应用的落地,也因此成功入选“2020年中国新经济之王最具影响力企业”榜单。
  • 特斯拉无极耳4680电池将正式投产,能量密度提升5倍,续航 9月,EDN报道了特斯拉新型电池无极耳:《马斯克亲自研发的“无极耳”电池技术是什么?》,当时媒体预计全面投产需要三年时间,今天传来消息,无极耳4680电池即将正式投产,同时作为首款搭载无极耳电池的车型Model S Plaid,在中国市场也已上线,续航里程超过840Km,未来能否超过1000公里?......
  • 汇聚新能源汽车半导体技术和产业专家的“中国国际汽车 本次高峰论坛邀请了来自特斯拉、博世汽车电子和蔚来等汽车厂商及Tier 1零部件供应商;恩智浦、安森美、高通、Isabellenhuette和Power Integrations等国际汽车半导体厂商;以及豪威集团、地平线和安世半导体等国内汽车半导体厂商的技术和应用专家,与500多位汽车电子行业人士共同探讨新能源汽车的发展趋势,以及汽车电子的设计、供应链、测试及质量控制等热门话题。
  • 汽车电子,从哪几个层面为汽车市场注入了活力? 智能化的电动车,在抽象层级结构上分成了感知层、决策层与执行层。这三个层级也代表了汽车半导体市场未来巨额的市场增量。其中感知层代表的是各类传感器产品,如摄像头、雷达、速度角度传感器等;决策层则是指计算控制芯片,如ECU、MCU等;而执行层就是电机、电控、转向等系统了,半导体在其中参与的主要是功率器件。
  • 小小一个电路帮你辨别电池过放电 本文所示的电池监控器电路对于使用两个9V电池供电的任何便携式设备都非常有用。当两个电池都处于健康状态时,LED每秒会发出一小束光。如果其中一个电池或两个电池均降至7.5V以下,则LED保持黑暗。闪烁时,整个电路消耗1mA的电流。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了