向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

6个公式搞懂全差分放大器如何工作

时间:2019-09-27 作者:Ron Mancini 阅读:
全差分放大器与运算放大器相似,但又不完全相同。若同时使用两个输入,该电路就充当差分输入/差分输出放大器。若使用两个输入中的任何一个(另一个输入接地),该电路就是充当单端输入/差分输出放大器。

全差分放大器和运算放大器相似,但不完全相同。在推导全差分放大器传递公式时,必须考虑输入电压和两个输出电压。可以使用图1中的全差分放大器电路来推导传递公式。公式1是放大器公式,其中a是放大器增益,公式2和3是放大器输入节点公式。

equation-F1-20190927.jpg
图1:如果一个输入接地,该电路将单端信号转换为差分信号。

equation-E1-20190925.jpg

将公式2和3代入公式1,合并各项,假设R1 = R3、R2 = R4,得到公式4:

equation-E2-20190925.jpg


equation-E3-20190925.jpg


equation-E4-20190925.jpg

当a远远大于(R1 + R2)时,公式4简化为公式5:


equation-E5-20190925.jpg

若同时使用两个输入,该电路就充当差分输入/差分输出放大器。若使用两个输入中的任何一个(另一个输入接地),该电路就是充当单端输入/差分输出放大器。 公式5说明了单端至差分信号转换的简便性:只需连接四个电阻,即可通过调节R2/R1电阻比来获得信号增益。有了全差分放大器,就不需要用两个或三个运放组合来实现单端至差分输出的转换器了。与运算放大器配置相比,它还有其它优点:速度更快,成本更低,所需空间更小,功耗更低。

利用公式6可以计算共模输出电压VOCM

equation-E6-20190925.jpg

注意,当R1和R2匹配时,共模输出电压变为零。最好用匹配电阻实现全差分放大器,以消除共模电压。薄膜电阻器是低价位匹配电阻器的最佳选择。随着全差分放大器的普及,越来越容易得到具有不同增益配置的低成本匹配膜电阻器组。

(原文刊登于ASPENCORE旗下EDN网站,参考链接:Developing equations for fully differential amplifiers,由Jenny Liao编译。)

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 解剖电流反馈运算放大器 之前我们讨论了VFOA(电压反馈运算放大器),现在来谈一谈CFOA(电流反馈运算放大器),其中包括性能分析。
  • 深入理解功率MOSFET数据表(下) 如果需要更好的理解功率MOSFET,则需要了解更多的一些参数,这些参数对于设计都是十分必要和有用的。
  • 解剖电压反馈运算放大器 工程师最常向我提的一个请求是对电压反馈运算放大器和电流反馈运算放大器进行比较。但如果不弄清每种运算放大器如何工作,是不可能确定某种应用应该选择哪种运放的。 本文重点介绍了电压反馈运算放大器。
  • 利用独特补偿技术驾驭大带宽电压反馈运算放大器 许多设计人员在试图将敏感的非完全补偿器件用于低增益时都事与愿违。与高增益带宽电压反馈设计相比,电流反馈拓扑因其优异的压摆率和低增益稳定性而受到欢迎。然而,电流反馈运放虽然具有优异的高频性能,但是却具有较差的直流精度和较高的输出噪声。
  • 用SPICE工具来检查电路潜在稳定性的简单方法 SPICE是一种检查电路潜在稳定性问题的有用工具 。本文将介绍一种使用SPICE工具来检查电路潜在稳定性的简单方法。
  • 详解SPICE模型的优点和缺点 每一个读过我博客的人都知道,我使用SPICE模型仿真电路。你可能听说过BobPease,在SPICE领域相当执有己见,他曾经说过:“SPCIE模型削弱了你对所发生事物的洞察能力。SPICE模型实际上降低了你对电路如何工作的理解能力”。今天,为了纪念Bob的生日,让我们来考虑一下SPICE模型的优点和缺点。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告