广告

继电器很好,但不必让它们浪费电

时间:2018-09-30 作者:Bill Schweber 阅读:
继电器(及螺线管)在物理学上有一个固有缺点:它们会消耗很多能量。它们是基于磁场能量的器件,需要电流来激励线圈,从而会引起功耗和发热。幸运的是,有很多方法可以解决这个难题,如利用555定时器来将继电器电流从高吸合
值切换到低保持值。这些方案的前期投入很值得,可以避免不必要的耗电。

虽然继电器工作时耗电量大,但仍然是设计工程师百宝箱中最有用的器件之一,这一弱点可以通过一些非静态驱动器和专用IC来克服。

老实说,我对继电器是又爱又恨。这些机电组件(您可以认为它们是有源的或者是无源的)是电气工程工具包中最早的器件之一。尽管现在的替代器件,比如固态继电器(SSR)和光耦合器(光隔离器),在某些情况下可以取代继电器,但在许多情况下,继电器仍然是最佳或唯一的解决方案。

你也许会问为什么?是的,继电器是“老古董”了,可能有些刚入道的工程师没有给予它应有的尊重或考虑。但是,市场上具有规格极其广泛的无数的继电器型号,这足以证明它的价值。我相信每年都有数百万个继电器销售出去(这还没考虑RF继电器呢)。

让我们面对现实:继电器易于使用;尺寸也容易调整;输入线圈和输出触点可以有完全不同的额定值(包括电流、电压、AC和DC);触点在很大程度上是信号未知的; 触点很容易“浮置”(未接地);触点配置可以针对具体情况而变化,包括常开(NO)、常闭(NC)、常开常闭、多个独立刀片,以及各种安装方式等等,不一而足。

它的另一个主要优点是线圈驱动侧电路和触点闭合侧之间是绝对隔离的。简而言之,继电器可以做很多事情,但不会出现令人头痛或意外的情况。此外,如果在规格范围内使用,一个高质量的继电器具有超过百万次的使用寿命。我们有什么理由不喜欢呢?

实际上,继电器的确有一个缺点,就是其固有的物理缺陷(其近亲螺线管也有):它们要耗费大量的电能。作为一种基于磁场能量的器件,它需要电流来激励线圈,而电流就意味着耗散功率(显然是浪费)和发热(这会产生严重的后果)。

幸运的是,有一些方法可以解决这个难题。首先,我们要知道继电器的“保持”电流通常约为其吸合电流的一半。鉴于这一事实,有不少聪明人想出利用电容,比如在RC定时电路、古老的555定时器以及其它电路中,将继电器电流从其较高的吸合值切换到较低的保持值。虽然这些解决方案要付出一些代价,但还是值得的。这样就可以摆脱过去那种简单的“通电后就放任不管”的做法,从而减少不必要的耗电。

DI1-F1-201810.jpg
图1:驱动继电器的直接而明显的方法是施加开/关电压(情况1),但这会浪费电;较好的方法是使用处理器驱动的PWM信号(情况2),甚至可以使用专用IC对继电器的工作进行完全管控(情况3)。(图片来源:德州仪器)

例如,可以采用具有可变占空比的PWM设计方案,这是降低功耗的常用技巧,如图1(情况2)。随着占空比的减小,平均功耗也会降低。其中的“窍门”是不管占空比如何,要保持脉冲速率足够高,以便继电器的时间常数可以平均电流及所产生的力。鉴于继电器是一种机电器件,产生如此高重复率的PWM信号原则上不是问题,但实际上它会给微控制器带来负担。

IC供应商知道这一点,也知道继电器是一个很好的机会。这就是为什么有专门针对这一应用的IC,例如德州仪器DRV110 PWM电流控制器,它可以减轻微控制器的负载(情况3),还允许用户设置初始激活电流、达到峰值电流的时间、保持电流和其它参数。
由于电路设计中不可避免的高温问题,对激活和保持电流进行单独控制非常重要。当继电器线圈由于施加电流温度升高时,其铜绕组的电阻会显著增加,如图2所示。

DI1-F2-201810.jpg
图2:继电器有一个鲜为人知的特性:像大多数情况一样,线圈电阻随着线圈温度的升高而不断增加,这会导致电流和磁力减小,从而引起不稳定且意想不到的操作。(图片来源:TE Connectivity)
因此,不要害怕继电器,它可能是可行的解决方案,很多时候还是最好甚至是唯一的解决方案,特别是在控制信号和负载非常不同或需要隔离的情况下。请记住,既然有如此多的继电器在使用,一定有很好的方法可以克服继电器的最大缺点,即在吸合后需要过大且不必要的功耗来保持状态。

你是否使用过继电器来解决问题?这是标准、常规的用途,还是偶尔发生的“我们遇到问题,而继电器也许可以解决”的情况?

(原文刊登于ASPENCORE旗下EDN姊妹网站EETimes,参考链接:Relays Are Great, But There’s No Need to Let Them Waste Power。)

《电子技术设计》2018年10月刊版权所有,禁止转载。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 阳光电源的125kW 1500VDC串联逆变器SG125HV 阳光电源的1500VDC、三相、光伏并网逆变器是光伏发电系统不可或缺的一部分。
  • 5G 设备耗电高怎么办?诺基亚准备用新材料解决 诺基亚近期在国际科学期刊《Nature Energy》发布了一项研究成果,称旗下贝尔实验室联合都柏林三一大学,合作研发出一种创新型电池技术。据介绍,研究人员采用的是一种基于碳纳米管的复合材料,它可以使电池内部存储更多的能量,有效提升密度,并以接近最高理论值的速度进行传输。
  • 简化HEV 48V系统的隔离CAN、电源接口 48V汽车应用中对隔离的需求持续增长。这是一种紧凑、高效、稳健、低噪声的方法,可通过CAN接口隔离48 V系统。为今天的汽车设计是一种平衡行为。在满足日益严格的排放标准和为
  • NCM811 电池已成车企们的新宠儿? 随着补贴政策的进一步收紧,对于电池能量密度以及续航里程提出了新的要求,同时动辄占到车身 1/3-1/2 的电池成本也成为发展新能源车的一块心结,目前的 NCM622、NCM523 已然不能满足国内车厂们的需求,811 成为了新宠儿。
  • 如何为电动自行车和电动摩托车提供更长的续航时间? 要获得更长的运行时间,需要从电池组中吸收尽可能多的能量;但若发生过过度放电,电池将被永久损坏。为避免电池过度放电,准确了解电池容量或荷电状态信息至关重要。
  • 如何设计高压DCM反相电荷泵转换器 在高级驾驶辅助系统、声纳应用超声波换能器以及通信设备中,都需要用到小电流、负高压来偏置传感器,反激式转换器、Cuk转换器和反相降压-升压转换器都是可能的解决方案。本设计实例详细介绍了转换器的工作原理,它将单个电感器与以非连续导通模式(DCM)工作的反相电荷泵结合起来,与接地参考升压控制器配合使用,以较低的系统成本产生较大的负输出电压。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告