广告

新一代3D封装技术走向异构集成

2018-12-18 Dylan McGrath 阅读:
新一代3D封装技术走向异构集成
英特尔推出采用异构堆栈逻辑与内存芯片的新一代3D封装技术——Foveros,将3D封装的概念进一步扩展到包括CPU、图像和AI处理器等高性能逻辑…

英特尔(Intel)日前举行“架构日”(Architecture Day 2018)活动,展示采用面对面堆栈逻辑的新一代3D封装技术,预计将于明年下半年面世。英特尔首席架构师Raja Koduri除了擘划未来的运算架构愿景,并介绍新的处理器微架构和新的图像架构。3JMednc

这款名为Foveros的3D封装技术累积英特尔二十年来的研究,以结合逻辑与内存的3D异构结构打造出堆栈芯片。相较于目前可用的被动内插器和堆栈内存技术,Foveros将3D封装的概念进一步扩展到包括高性能逻辑,如CPU、图像和人工智能(AI)处理器。3JMednc

英特尔首席架构师兼Core和视觉运算部门资深副总裁Raja Koduri说:“我们正加倍努力提升在现有工艺与先进封装的领导地位。”3JMednc

Raja Koduri 3JMednc

Raja Koduri3JMednc

随着半导体产业持续追求在集成式3D封装中连接不同的芯片和小芯片(chiplet),Koduri补充说:“我们终于找到了如何使其成为真正可制造的技术。”3JMednc

Koduri表示,因应客户的要求,英特尔已经用Foveros技术来开发产品了。Koduri并在此次活动中展示所谓的第一款混合式x86架构,采用10nm逻辑小芯片、22nm基础芯片与内存,采用12×12×1-mm Foveros封装,而仅消耗2mW待机功耗。3JMednc

根据Koduri,Foveros技术将为设计人员来更大的灵活性,可以混搭IP模块以及各种不同外形的内存和I/O组件。他表示,该公司计划在整个英特尔产品线中有效利用该技术。3JMednc

Intel hybrid architecture3JMednc

英特尔利用Foveros技术制造出第一个混合式x86架构(来源:Intel)3JMednc

英特尔在为其创办人之一Robert Noyce建造的家中举行新闻发布会,Koduri在会中发表这项Foveros技术。在此运算典范迅速发生变化以及传统工艺微缩迈向尾声的时代,Koduri在两个小时的演讲过程中介绍了英特尔对其架构发展蓝图的愿景。3JMednc

Koduri预期新架构将定义此运算时代。他表示,在未来10年,运算架构带来的更多创新将超过过去50年的总和。3JMednc

他说:“在这个时代中,我们将围绕此快速进展建构未来的道路。”3JMednc

Intel 3D integration3JMednc

英特尔表示,采用2D和3D封装技术可以灵活地结合较小的IP小芯片,以满足各种应用、功率限制和外形尺寸等需求(来源:Intel)3JMednc

Koduri并概述英特尔的设计和工程模型变化,是围绕着六项关键支柱而构建的:工艺、架构、内存、互连、安全和软件,缺一不可。3JMednc

对于英特尔而言,Koduri说,摩尔定律(Moore’s Law)不仅仅是为了增加密度。他坦言持续微缩将面临重大挑战,但是,他补充说:“我们需要以实体为基础实现创新。我们需要创新——不只是为了英特尔的利益,也出于为产业谋福祉。”3JMednc

除了Foveros技术之外,英特尔还利用这个机会推出了代号为‘Sunny Cove’的下一代CPU微架构。其目标在于提高通用运算任务的每频率效能和功率效率,并包括加速AI和密码学等特定运算任务的新功能。3JMednc

据该公司介绍,Sunny Cove提供了更大的平行性,并采用新的算法来降低延迟以及更大的缓冲和快取,优化以数据为中心的工作负载。这将是明年稍晚英特尔下一代Xeon和Core的基础。3JMednc

在图像芯片方面,英特尔推出了新的Gen11集成型显卡——预计将在明年推出10nm处理器,并勾勒全新Xe架构计划,作为2020年起集成和独立图像芯片的基础。3JMednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考原文:Intel Steps Toward Heterogeneous Integration编译:Susan Hong, EET Taiwan3JMednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Dylan McGrath
EE Times美国版执行编辑。Dylan McGrath是EE Times的执行编辑。 Dylan在电子和半导体行业拥有20多年的报道经验,专注于消费电子、晶圆代工、EDA、可编程逻辑、存储器和其他专业领域。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 核酸检测需要用到哪些应用器件? PoC分子诊断技术可以帮助医生在患者首次就诊时快速做出诊断和治疗决策,患者无需等待数天才能获知检测结果,从而提高了医疗水平。本文将简要介绍这种检测方法,并详细介绍此类仪器主要模块中的一些实际应用器件。
  • 多功能LED驱动器可使用高于或低于LED灯串电平的输入电 本文介绍如何选择合适的拓扑及其相应的连接。
  • 使用带有片上高速网络的FPGA的八大好处 尽管在FPGA中的按位来布线非常灵活,但其缺点是每个段都会给任何给定的信号通路增加延迟。需要在FPGA中进行长距离传输的信号会导致分段之间的连接延迟,从而降低了功能的性能。按位布线的另一个挑战是拥塞,它要求信号路径绕过拥塞,这会导致更多的延迟,并造成性能的进一步降低。
  • RMS所应了解的五件事 本文对下面五个与RMS相关的信息,着重强调了它们的实用价值:RMS是给定信号段的特定属性;滤波与求平均值不是一回事;RMS并非总是与功率有关;在采样系统中,RMS比均值更优;无法通过对连续的RMS结果滤波来提高精度。
  • 机器人应用中的毫米波雷达传感器 随着机器人技术的进步,互补传感器技术也在进步。就像人类的五官感觉一样,通过将不同的传感技术结合起来,可在将机器人系统部署到不断变化、不受控制的环境中时取得最佳效果。
  • 从奥迪A8的内部设计中,我们可学到哪些? 当奥迪在2017年底推出其重新设计的A8轿车时,该公司吹捧它是汽车行业的首款3级汽车。当时奥迪所面临的技术问题和陌生的成本结构,整个汽车行业现在都仍在面对。本文根据奥迪A8的拆解,对五个问题进行了深刻解读。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了