广告

并联电阻的分流电感很重要

时间:2018-12-14 作者:Jerry Steele,安森美 阅读:
在使用分流器测量电流的高频开关系统中,可能发现诸如正弦波电流纹波幅度过大、方波纹波或任何电流快速转换过冲,或高频噪声过大等问题。不修复这些动态问题,可能会影响电流测量精度并损坏数据采集系统。故障排除需要具有从直流到高频带宽的高质量钳位电流探头,使用高质量的分流器和IC可以获得更好的测量精度。

在高频开关系统中,通过并联电阻测量电流时,您可能会观察到正弦波电流纹波幅值过大、方波纹波或快速转换电流过冲或过高的高频噪声等问题。这些问题是由并联的分流电感引起的,当并联电阻值较低时,尤其是在1mΩ以下时,分流电感就变得更为明显。

DI6-F1-201812.png
图1:这是分流电感问题的等效电路图。100kHz开关稳压器的方波输出被L1和C1滤波,使得电流纹波是正弦波。H1捕获实际电流波形(由ROUT1探测),E1捕获并联电阻的精确电压及电感(由Rout探测),就像电流检测放大器(20V电源有助于方便地偏置和缩放以同时查看输出波形)。

您可能遇到不正确的正弦波波纹信号幅度和波形的问题。这里建模的一个实例中,波纹信号太大,使人怀疑整个测量的准确性。电路图中显示了一个神秘的三角波,在并联电阻附近,在我对电路进行仿真时才注意到。

DI6-F2-201812.png
图2:绿色曲线代表实际的纹波电流;黄色曲线代表并联电阻的压降,跟不带输入滤波器的电流检测放大器输出的信号是一样的。请注意,三角波的幅值比正弦波大得多(源E和H被缩放,当一切正常时,它们将匹配)。

DI6-F3-201812.png
图3:绘出了我们在应用中看到的问题。它有一个输入滤波器,所以放大器输出的波形是正弦的,但幅值过大。这只不过是滤波电容器太小的问题。

DI6-F4-201812.png
图4:此应用电路图显示滤波器在RFILT和CFILT处的初始值不正确,产生了图3的波形。将CFILT修正为0.3µF后将提供正确的波形和幅值,如图5所示。

DI6-F5-201812.png
图5:纹波有正确的滤波值。波形互相重叠。

正弦波纹波在并联电阻有足够的分流电感时确实会变成三角波形。放大器最初有一个正弦波输出,因为设计人员明智地在放大器输入处使用了一个低通滤波器,但是它没有被正确地“调整”。在这种情况下,需要调整的有电容值,直到纹波符合正确的计算值。实际应用中的分流问题是,由于电感规格的不确定,它们不遵守规则的分析方法。您可能会在数据表中看到“0.5到5nH”这样的标注,但是却没有具体的值,这就看您是否幸运了。所以您需要使用一个电流探头,通过反复调整电容器来确定正确的值(很明显,如果幅值太大,就增加电容值,幅值太小的话就减小电容值)。

事实上,如果您有一个真正的电流方波,您可能可以很幸运地以同样的方式“调出”一个过冲。一旦找到正确的滤波值,就可用于生产,甚至在不得不更换并联电阻供应商时,它仍可能有用。构建低于1mΩ并联电阻的方法不多。我是不是提到过,由于分流电感的影响,瞬态响应问题会随着并联电阻的变小(通常小于1mΩ)而变得更糟?

在输入前完成滤波的重要性

滤波应在电流检测IC输入之前完成,这很重要。对没有前端滤波的系统长期收集的数据显示,在电流和功率值的数据图中不明原因地偶然(但频率已足以引起问题)出现了大的尖峰。并联电阻的高频响应上升,引起电流检测前端混叠,从而产生尖峰。不管是斩波稳定放大器、delta-sigma转换器还是平均SAR,只要是采样系统,那么它们都是脆弱的。与任何混叠问题一样,正确的解决方法是在电流检测IC输入前进行模拟滤波。离开那些说您不需要滤波器的供应商。如果它是一个采样系统并且您正在收集数据,您的电流检测IC就需要一个干净的信号。还请记住,混叠不是唯一可能存在的问题,若是不对输入进行滤波,高频输入很可能使前端过载。

最后,如果您需要进一步抑制噪音,当然可以调到更低的频率。在输入进入第一个放大器之前进行滤波总是有益的。大多数电流检测IC在单极输入处会限制实际滤波,但还是应该使用,如果需要,在放大器的输出处还可实施更高阶的滤波。

虽然本文讨论的问题存在于瞬态域,但任何敏感的读者都会意识到它可看作一个简单的一阶带宽问题。在欧姆值极低的并联电阻上的分流电感产生了几百kHz的转角频率,有时出奇地低。无论怎样,作为带宽问题、时间常数问题或瞬态响应问题,最佳滤波器的时间常数都将等于并联电阻及其电感的时间常数(或补偿并联零频率的极点频率):

DI6-E1-201812.png

电流检测IC将始终使用差分滤波器,RFILT将是两个电阻之和。从数学的角度,最难的部分是得到一个实际的LSHUNT值。

DI6-F6-201812.png
图6:频率响应曲线(绿色)显示有3nH电感的500µΩ并联电阻的上升频率响应,以及有一对10Ω电阻和0.3µF电容的输入滤波器的互补响应。请注意,并联电阻显示出约为30kHz的转角频率。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Current Shunt Resistor Inductance: It Matters。)

《电子技术设计》2018年12月刊版权所有,禁止转载。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 【理论篇】示波器上的频域分析利器--时频域信号分析技 这是第二篇理论篇,主要介绍Spectrum View架构、FFT等内容。
  • 两个过不了出厂测试的“黑盒子”,用一个电阻搞定? 两个过不了出厂测试的“黑盒子”,是并联缓冲器导致故障,还是时钟线上的回波引发故障?解决问题的最好办法是让时钟缓冲器芯片不再并联,还是在两个输出之间串联一个小电阻?
  • 为厨房电器增加触摸功能 五年前,为厨房电器和洗衣电器配备触摸屏还只是CES上提出的概念,目的是吸引与会者及展现公司的远见卓识。如今至少对于少数高端电器而言,带触摸屏的白色家电产品已成为现实。
  • 使用它或者转换它 如果输出只需要每微秒转移5V电压,那么一个可保证最小5V/μs压摆率的放大器,再加一点安全裕度,就能够很好地产生我们所需的输出电压吗?实际上并非如此,因为如果让运算放大器的输出接近数据手册里的最大速率,输出可能很不准确,因此有时需要指定一个比信号需要的转换速率高得多的压摆率。
  • 从谐波中找到信号的带宽 在时域和频域中估算信号带宽的方法有很多种,比如之前讨论的信号上升时间和带宽的通用公式。信号完整性大师Eric Bogati n提供了经验法则2,即根据时钟频率来估算信号带宽。Eric强调,用上升时间来计算信号带宽是完全正确的,但使用经验法则2可以快速得到合理的答案。
  • 为什么智能功率音频放大器对智能手机越来越重要 多年来,手机的屏幕尺寸变得越来越大,但音频体验并不总能并驾齐驱,特别是在“响亮”喇叭模式下。 因此,更多的高端手机提供立体声作为附加功能,智能手机和其他音频播放设备中采用立体声音频的趋势表明,音频放大器在智能手机设计中扮演着尤为重要的角色。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告