向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

经典模拟滤波器仍值得研究吗?

时间:2019-04-18 作者:Bill Schweber 阅读:
您对经典的模拟滤波器有何看法?每一位电子工程师都必须精通?或者,滤波器分析就像是一个用来测试学生是否适合模拟设计世界的测试?

对于大多数的电路和系统来说,使用电感器、电容器和电阻器的模拟滤波器至关重要。无论是被动还是主动设计,透过具有高难度数学的理论结构、实际的「应用说明」(application note)设计与物料清单(BOM),以及甚至是具有实体建构细节的实作电路等途径,有时候似乎将其研究至「超越无限」的境地。9jFednc

这并不难理解,因为无论是哪一个应用领域,滤波器都在讯号路径中扮演多种重要角色。无论是低通、高通、带通还是陷波滤波器,即使无法为讯号带来什么价值,他们都还是必要的,因为滤波器有助于提高讯号噪声比(SNR)、减少来自邻近通道的干扰,以及衰减50/60Hz的拾音等。9jFednc

尽管如此,经典的滤波器理论是一个可以引发学生和工程师好奇心的主题,因为它们包括各种令人惊艳以及极其枯燥的不同版本,同时还有许多不同的拓扑结构,例如pi-filter (如图1)、Chebyshev、Sallen-Key、Butterworth、Cauer (椭圆)以及高斯(Gaussian)等等。而其属性也各不相同,包括一阶、二阶、滚降(roll-off)、通带纹波、阻带纹波、相位性能、平衡(差分)等等,可说是「族繁不及备载」。9jFednc

20190412_Filter_P19jFednc

 9jFednc

图1:Pi Filter(来源:Quora)9jFednc

012ednc20190418.jpg9jFednc
9jFednc

图2:Rose-Hulman Sallen-Key Filter9jFednc

(当然,这些都只是经典的全模拟滤波器。除此之外,还有准模拟开关电容滤波器,可在多个电容器之间使用电荷均衡和频率切换以实现滤波器功能。这些都为滤波器带来更多的价值,因为它们与IC制程兼容,在许多情况下都不必再使用分离式组件滤波器。)9jFednc

经典模拟滤波器可用于数百MHz至GHz范围。然而,这些集总组件(lumped-element)滤波器越来越难设计以及制造用于更高频率。寄生效应以及组件容差和漂移为其带来真正的挑战,而且这些滤波器通常需要个别修整,以抵消其难以建模的现实。9jFednc

因此,如果少了分离式组件滤波器的其他替代方案,考虑到尺寸、性能、一致性和成本等,在我们周遭的许多装置可能都会变得不切实际。这些产品显然非常实用,主要就是因为采用了完全不同的模拟滤波器途径:表面声波(SAW)和体声波(BAW)滤波器(以及薄膜体声波谐振器——FBAR)。SAW和BAW技术已在过去几十年来发展地相当成熟了,可以创造完全不同于独立式组件模拟滤波器的低成本、高性能组件。9jFednc

他们利用众所周知的多功能压电效应,将电能转换为沿表面(SAW)或在工程陶瓷晶体材料(BAW)内传播的声波。SAW组件可在大约1 GHz的频率下运作,而BAW组件可在1 GHz以下到multi-GHz的覆盖范围内重迭。这两种组件的共同点之一在于都不需要研究经典的集总组件模拟滤波器设计理论和实践。9jFednc

013ednc20190418.jpg9jFednc
9jFednc

图3:基本SAW滤波器(SAW、BAW以及图1的未来无线版本)9jFednc

014ednc20190418.jpg9jFednc
9jFednc

图4:SAW、BAW以及图2的未来无线版本9jFednc

然而,现实情况是经典的模拟滤波器在当今大部份设计活动中的重要性越来越小了,但学校仍然在详细地教授这方面的课程。我最近针对十几所大学提供的大学部电子工程(EE)课程进行了一项调查,我发现除了两所大学之外,其他的大学都开设了经典过滤器设计的课程(但不清楚是必修还是选修课程)。只有两所大学开设SAW和BAW课程。9jFednc

这是因为学校教师觉得经典设计仍有其必要性吗?还是因为他们教起来很轻松?或者因为有太多辅助数据可用于轻松地支持这门课?我跟你一样毫无头绪。9jFednc

我认为经典的模拟滤波器理论现在应该被当作一门概论/调查课程来教授:介绍滤波器的用途是什么、为什么需要、有哪些不同类型与关键特性,以及用于量化其性能的参数——而且以最小的数学含量。那些最终需要了解更多(或者由于某种原因而喜欢这个话题的人),都可以很容易地找到它。让他们更能够专注于现在和未来的滤波器,包括SAW、BAW、谐振结构,以及甚至是用于微波的波导滤波器(没错,仍然广泛使用)。更棒的是了解用于低于10 GHz应用的滤波器,如5G或77 GHz汽车雷达等。9jFednc

您对经典的模拟滤波器有何看法?你很喜欢但准备好放手了吗?它们是否会让你感到不安,因而希望看到它们变得不那么受关注?或者它们是类似于Maxwell方程式的关键建构模块,每位电子工程师都必须精通而不只是熟悉而已?又或许你的观点更悲观,觉得滤波器分析就像是一个用来测试学生是否真的适合模拟设计世界的测试?9jFednc

(原文发表于ASPENCORE旗下EDN姐妹媒体Planet Analog,参考链接:Is It Time to Cut Back on Study of Classic Analog Filters?,编译:Susan Hong)9jFednc

 9jFednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 升压放大器让设备兼具小身材和大音量 消费者现在都用非常小巧的设备来听音乐,但是锂电池和低压电源通常不能实现大音量的音频效果。升压放大器因其可以增加响度,同时能实现极小尺寸的封装和超低的功耗日渐流行。
  • 小米引爆的GaN快充离成熟还差一步 EDN上的文章《一文看懂小米捧红的氮化镓快充到底是什么?》对GaN技术进行了详细科普。本文就来讨论下这项技术的现状以及未来又会有何发展。
  • 2020:消费电子产品未来几年趋势预测 一年伊始,正是对未来做些预测的时候。作者对未来几年消费电子产品的发展趋势提出了自己的观点。他认为,深度学习、自动驾驶汽车、5G设备、处理器、电池等将会快速发展,其中深度学习会影响未来的许多应用,包括自动驾驶汽车、网络安全,甚至各国的选举。
  • 小米GaN氮化镓充电器实用吗?我们对比了五款65W PD充电 2020年2月小米一口气更新了多款65W PD充电器,包括使用了氮化镓的小米GaN充电器、多口小米2A1C充电器、魔改A口PD充电器等等,应该是单月内发布最多同功率充电器的品牌商了。他们之间功率器件不同、协议不同、设计不同、价格也不同,小编整理了小米最热门的五款65W充电器,细说他们之间的不同之处。
  • 扩频频率调制以降低 EMI 电磁辐射 (EMR)、电磁干扰 (EMI) 和电磁兼容性 (EMC) 是涉及来自带电粒子的能量以及可能干扰电路性能和信号传输的相关磁场的术语。随着无线通信的激增,通信装置不计其数,再加上越来越多的通信方法 (包括蜂窝、Wi-Fi、卫星、GPS 等) 使用的频谱越来越多 (有些频带相互重叠),电磁干扰成了客观存在的事实。
  • 快充是否要以牺牲电池寿命为代价?荣耀、红米高管吵了起 此前,在小米10发布会上,雷军提到小米10的30w比友商40w更快,虽然这一说法被很多花粉认为是“伪科学”,但随着各种65W快充手机的出现以及华为p40采用40W快充的消息曝光,“小米30W快充比友商40W快充更快”又成为了网友们讨论的热点。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告