广告

新型MEMS光束操纵技术有望大幅降低激光雷达成本

时间:2019-04-26 阅读:
瑞典KTH皇家理工学院(KTH Royal Institute of Technology)的一支研究团队长期致力于研究激光雷达系统核心的光束操纵技术,开发出了一种比以往各种技术方案更经济、更小巧、资源利用率更高效的光束操纵器件。

激光雷达(LiDAR)是自动驾驶汽车探测和识别周围物体的关键技术之一。据报道,瑞典KTH皇家理工学院(KTH Royal Institute of Technology)的一支研究团队长期致力于研究激光雷达系统核心的光束操纵技术,开发出了一种比以往各种技术方案更经济、更小巧、资源利用率更高效的光束操纵器件。

KTH微纳米系统学院的博士后Carlos Errando-Herranz表示,凭借我们的技术方案,这种激光雷达大规模量产之后,成本可以大幅下降至约10美元,重量仅为几克(包括外设组件),功耗可低至数百毫瓦。这项研究成果已发表于Optics Letters杂志。

光束操纵技术的应用需求很广泛,例如高速光通信、激光雷达以及医学成像。传统的激光雷达光束操纵系统利用电动马达来偏转反射镜,并在特定区域上扫描激光束,这种系统通常尺寸和重量都较大,功耗较高,成本高达数千美元。因而,这种传统光束操纵系统无法应用于电池供电的机器人、智能手机、无人机、体内光学相干断层扫描(OCT)探头以及小型化、低成本的空分复用(SDM)系统。

近年来,通过利用MEMS微镜和光栅缩小了光束操纵系统的尺寸,从而显著降低了成本和重量。然而,这些激光雷达系统的组件(如激光器、扫描装置、探测器及其它电子器件)仍然是独立制造的,并且组装成本较高。因此,进一步的多组件集成小型化有潜力以低成本提供更小、更轻、功耗更低的激光雷达系统。

集成光子学,尤其是硅光子学,可以通过电气处理和控制、光束操纵和光学信号处理器件、光源及探测器的高密度集成来应对这些挑战。这使得集成光子系统不仅在尺寸和重量方面优于自由空间光学系统,而且在成本、集成密度和鲁棒性方面也优于自由空间光学系统。

集成光子学的光束操纵方案主要集中在光学相控阵。光学相控阵由发射器阵列(通常为光栅耦合器)组成,使远场衍射图案高度依赖于发射波的相对相位。通过使用波导移相器调谐这些波的相对相位,调整输出光束的角度。这种系统可以非常严格地控制光束的形状和方向,之前的研究工作已经展示了1D光束操纵、超高角度光束分辨率2D操纵和激光雷达测量。不过,常用的热光移相器具有一个很重要的缺陷:功耗非常高。

据Carlos Errando-Herranz介绍,其研究团队首次利用MEMS可调谐波导光栅在实验中成功演示了低功率光束操纵技术。研究结果显示,在1550 nm波长,驱动电压低于20 V,静态功耗低于uW的条件下,光束转向可达5.6°。

这款光束操纵器件基于利用MEMS执行器改变波导光栅耦合器梳齿之间的间距。图1(a)展示了该器件的示意图。KTH的研究人员设计了一个形成折叠弹簧的悬浮光栅,一端连接到锥形波导,以进行光耦合,另一端连接到MEMS梳状驱动执行器。梳状驱动执行器的水平致动拉伸了悬浮的光栅,改变了光栅梳齿之间的距离,从而导致光栅的面外角发射发生变化。图1(b)为MEMS可调谐光栅的扫描电子显微镜(SEM)图像。

030ednc20190426

图1(a)展示了这款MEMS可调谐光栅驱动前后的工作原理。(b)这款MEMS器件的扫描电子显微镜(SEM)图像。光栅作为软弹簧的一部分,通过梳齿驱动执行器拉伸,改变光栅齿之间的间距。(c)光栅齿间距增加对光束转向影响的模拟结果(颜色:发射光强度)叠加分析估算(白线)。(d)梳齿驱动执行器件的分析致动估算。

“我们采用了和智能手机加速度计、陀螺仪相同的MEMS制造工艺,”他说,“这意味着大规模量产的成本可能非常低。”

Errando-Herranz称,该技术可以使更多的机器人或无人机能够自主运行或自主飞行。

KTH副教授Kristinn B. Gylfason说:“这项技术可以使无人机无需远程控制,例如运送除颤器等紧急医疗设备的无人机。”

“机器人和无人机是绝对可能的应用领域,”Gylfason说,“目前的激光雷达系统对于自动驾驶汽车而言成本过于高昂,而汽车产业对成本非常敏感。其他可能的应用,还包括智能手机的3D人脸识别,例如苹果(Apple)的Face ID。”

KTH激光雷达方案的独特之处在于它采用了新型MEMS光束操纵技术,但是又不同于MEMS微镜。

“传统的机械式激光雷达基于在旋转塔上安装一系列激光器,如激光雷达领先厂商Velodyne推出的‘全家桶’和‘超级冰球’,”Gylfason说,“我们激光雷达的研究方案基于集成的微光力学,我们在硅芯片表面构建了一个可调谐光栅。通过改变光栅周期,可以决定光束的扫描方向。”

与自由空间光学技术相比,KTH的技术方案要更小、更轻几个数量级,并且成本更低、更不易受机械噪声影响,此外,需要的组装要求也非常有限。集成热光(thermo-optic)相控阵系统的功耗比KTH的这款器件至少高5个数量级(受测量限制,KTH研究人员估算约达7个数量级),并且会受到热串扰问题的困扰,而KTH的技术方案本身就可以避免这个问题。

与电光调谐技术相比,KTH这款器件的功耗至少低1个数量级(更可能是3个数量级)。此外,KTH实现的光束操纵,比之前报道的热光可调谐单光栅大两倍,随着未来MEMS器件的设计改进,具有更大角度调谐的潜力。

KTH研究人员开发的这种光束操纵技术,可以提供产业长期以来一直寻求的低成本和低功耗,以将人工视觉扩展到智能手机或无人机在内的电池供电设备,还有用于体内医学成像的有源探头,以及通过空分复用(SDM)提高光通信带宽。

(来源:微迷)

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • ST传感器 + MCU + S2-LP:解决物联网难题只需三步 2019年5月29日,意法半导体(ST)在深圳举办了主题为“新工业、新智造”的首届工业峰会,围绕电机控制、电力与能源和工业自动化,深入探讨了ST将如何助力亚洲工业及工业物联网进行未来的技术布局。
  • 细数工业自动化和机器人技术的创新 现在工业自动化的最终目的是要在工厂里做到员工越少越好,甚至做无人工厂。但即使是做无人工厂,里面也未必没有人,哪怕有一个员工在里面,自动化也需要有安全性,以保证员工不会受到伤害。
  • 如何处理模拟误差? 没有什么电路或系统是完美的,所以真正的问题是「对于应用来说够不够好?」不过,这经常是一个两难的问题...
  • 多器官微流控芯片技术及其应用 随着器官芯片技术的发展,其应用仍然存在一定的局限性,大部分生理途径需要连续介质循环和组织间相互作用,单器官芯片无法全面反映机体器官功能的复杂性、功能变化和完整性。为适应人体结构复杂性,未来的研究需要建立更加复杂的多器官微流控芯片(Multi-Organ-Chip, MOC)系统,将几种器官等同物合并到类似人类的代谢环境中,开发动态的实验室微生物反应器,进行系统的毒性检测和代谢评估。
  • 传感器赋能智能手机变革,光学传感器巨头ams解读三大创 3D传感方案、全面屏及摄像头功能优化将是未来智能手机的三大增长点,ams将凭行业一流的技术灵活和领先性应对瞬息万变的市场。
  • 利用MEMS传感器解决家电应用“痛点” 家电应用中的痛点可以通过MEMS传感器来解决。比如,当冰箱出现异味时,气味传感器可以感知冰箱内部的气味的变化量并反馈给主控,主控根据气味传感器的反馈数据,定期控制除味模块,实现智能化控制。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告