广告

如何设计高压DCM反相电荷泵转换器

2019-06-18 John Betten 阅读:
如何设计高压DCM反相电荷泵转换器
在高级驾驶辅助系统、声纳应用超声波换能器以及通信设备中,都需要用到小电流、负高压来偏置传感器,反激式转换器、Cuk转换器和反相降压-升压转换器都是可能的解决方案。本设计实例详细介绍了转换器的工作原理,它将单个电感器与以非连续导通模式(DCM)工作的反相电荷泵结合起来,与接地参考升压控制器配合使用,以较低的系统成本产生较大的负输出电压。

在高级驾驶辅助系统、声纳应用超声波换能器以及通信设备中,都需要用到小电流、负高压来偏置传感器。反激式转换器、Cuk转换器和反相降压-升压转换器都是可能的解决方案,但是会受到一些不利因素的影响,如变压器(反激和Cuk)庞大笨重,或控制器的输入电压额定值(反相降压-升压)限制了其最大负电压。本文将详细介绍转换器的工作原理,它将单个电感器与以非连续导通模式(DCM)工作的反相电荷泵结合起来。与接地参考升压控制器配合使用,可以以较低的系统成本产生较大的负输出电压。6j0ednc

图1显示了简化的功率级原理图。请注意,此原理图与传统的反相降压-升压转换器不同,后者的控制器在VIN和−VOUT之间“浮动”。在那种转换器中,可实现的最大−VOUT是控制器的最大VCC减去最大输入电压。这样的话就几乎不可能找到一种控制器能够驱动输出电压为-100V或更高的N沟道场效应晶体管。6j0ednc

DI3-F1-201906.jpg6j0ednc
图1:电感驱动反相电荷泵的简化功率级。6j0ednc

电路的工作可分为三个阶段(如图2)。在第一个阶段,FET在占空比(d)期间导通,它在电感器上施加VIN,允许电流从零上升,从而存储能量。然而,在前一个周期中,C1(其保持大约等于VOUT的电压)耗尽了其过量存储的能量,反向偏置了D1和D2。这就是D1、D2和C1未在此阶段显示的原因。C2提供所有负载电流。6j0ednc

在下一个阶段d’中,FET关断,电感电流开始放电,导致其电压极性反转。这大大增加了节点VFET处的电压,允许C1通过D1充电。在此阶段,电流倾降,直至D1关断。然而,由于D1的反向恢复特性,电流在最终关断之前变为反向,此时电感器电流斜率改变并且其电压极性再次反转。6j0ednc

第三个阶段d'',能量从C1传递到C2。当D1停止导通时,由于VFET节点电压被强制接地(通过FET体二极管的电流通路),电感器电压被钳位到VIN。电流流过D2,直到C1和C2两端的电压相等,但通过FET体二极管的电流会持续直到电感电流减小到零。此时,电感器两端的电压崩溃,电路产生寄生效应,直到FET再次导通。6j0ednc

DI3-F2-201906.jpg6j0ednc
图2:DCM工作模式的三个阶段。6j0ednc

图3详细介绍了关键电压和电流的波形。DCM工作模式允许尽可能小的电感,但可以有较高的峰值电流。DCM工作模式的电感在最大占空比、最小VIN和满载时确定。按照控制器数据表仔细检查最大占空比,通常可以选择60%~90%,否则可能发生脉冲跳跃。较大的电感会使工作进入连续导通模式(CCM),因为在下一个开关周期之前电流不会返回到零。这样,所用的电感可能比所需的要大,因此要加倍小心以防止次谐波振荡。6j0ednc

DI3-F3-201906.jpg6j0ednc
图3:DCM中的关键电路波形。6j0ednc

设计公式

对于DCM工作模式,公式1很好地阐释了电感器如何存储能量:6j0ednc

DI3-E1-201906.jpg6j0ednc

其中ipk是峰值电感电流,η是转换器效率。峰值电感电流等于公式2:6j0ednc
6j0ednc
DI3-E2-201906.jpg6j0ednc

由以下两个公式:6j0ednc

DI3-E2-1-201906.jpg6j0ednc

得到占空比(d):6j0ednc

DI3-E3-201906.jpg6j0ednc

由于VIN是FET导通时电感两端的电压,而ipk是占空比d结束时的电感电流,因此将公式2代入公式3得到公式4和5:6j0ednc

DI3-E4-201906.jpg6j0ednc

DI3-E5-201906.jpg6j0ednc

在d'阶段,平均负载电流由公式6和7中的几何关系确定:6j0ednc

DI3-E6-201906.jpg6j0ednc

DI3-E7-201906.jpg6j0ednc

将公式2代入公式7得到公式8:6j0ednc

DI3-E8-201906.jpg6j0ednc

该周期的剩余期间定义为d'',这时能量转移到C2并且剩余的电感电流放电到零(公式9):6j0ednc

DI3-E9-201906.jpg6j0ednc

图4是利用倍压器实现该转换器的原理图示例,其中允许每个功率级元件的电压应力等于满输出电压的一半。这使得组件的选择更加广泛。在这个应用中,计算出的电感就好像输出电压只有一半,而负载电流为两倍。6j0ednc

DI3-F4-201906.jpg6j0ednc
图4:带倍压器和电平转换电流镜的电感驱动反相电荷泵示意图。6j0ednc

该转换器提供小型单电感器解决方案,用于产生较大的负电压。此外,它允许使用低成本接地参考升压控制器来驱动N沟道FET。6j0ednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:How to design a high-voltage DCM inverting charge pump converter。)6j0ednc

本文为《电子技术设计》2019年6月刊杂志文章。6j0ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 电晕女生的美的电热水器,其构造原理是怎样的? 电热水器把女生电晕了?近日,发生了美的电热水器电晕女生的事故,而今日美的的回应让业界一片哗然,还上了热搜。那么,我们来看看事情的经过,然后分析一下电热水器的构造原理,到底是什么把女生电晕了?
  • 盘古团队发现苹果安全芯片不可修复漏洞,iOS14可越狱,iPh 苹果自从跨入iOS14时代,好久没有传出越狱的消息,上次还是2018年9月iPhone XS的iOS12越狱,不过,最近的2020 Mosec移动安全技术峰会上,国内越狱团队盘古在最新的iPhone11 Pro上演示了越狱。
  • 学会喜欢高压运算放大器IC 不久以前,要调整运算放大器来提供大约50V或更高的电压还是一项挑战。幸运的是,在最近几年中,IC供应商努力克服了将模拟器件限制在较低电压下的工艺限制。
  • 专属AC/DC转换器:安全保障还是捆绑消费? 当需要匹配的4.5×3.0mm插头缺货时,我感到很失望。向店员解释了我的情况,他告诉我,即使他们有合适的库存,也没有用,因为这装置仍然不会运作…我感到迷惑不解,直到他解释说较新的戴尔设备具有内部第三线连接,该连接允许戴尔(和笔记本电脑)验证适配器是否为戴尔原厂设备…
  • 英伟达RTX 系列3090跑分 比 2080 Ti 性能超50%,超频潜 英伟达的显卡是当今计算机世界当之无愧的霸主,最新的英伟达 RTX 3090 显卡更是被爆性能大涨50%。
  • 面向智能交通基础设施的模块化边缘计算技术 专为边缘应用打造的系统要求具备高度灵活性。这需要可扩展的处理能力,而采用嵌入式计算机模块是最为高效的实现方式。从智慧城市LoRa网关到智能充电基础设施和视频监控服务器,三种实际应用均搭配可选AI技术,以展现这种模块化设置的优势。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了