广告

如何设计高压DCM反相电荷泵转换器

2019-06-18 John Betten 阅读:
如何设计高压DCM反相电荷泵转换器
在高级驾驶辅助系统、声纳应用超声波换能器以及通信设备中,都需要用到小电流、负高压来偏置传感器,反激式转换器、Cuk转换器和反相降压-升压转换器都是可能的解决方案。本设计实例详细介绍了转换器的工作原理,它将单个电感器与以非连续导通模式(DCM)工作的反相电荷泵结合起来,与接地参考升压控制器配合使用,以较低的系统成本产生较大的负输出电压。

在高级驾驶辅助系统、声纳应用超声波换能器以及通信设备中,都需要用到小电流、负高压来偏置传感器。反激式转换器、Cuk转换器和反相降压-升压转换器都是可能的解决方案,但是会受到一些不利因素的影响,如变压器(反激和Cuk)庞大笨重,或控制器的输入电压额定值(反相降压-升压)限制了其最大负电压。本文将详细介绍转换器的工作原理,它将单个电感器与以非连续导通模式(DCM)工作的反相电荷泵结合起来。与接地参考升压控制器配合使用,可以以较低的系统成本产生较大的负输出电压。58Tednc

图1显示了简化的功率级原理图。请注意,此原理图与传统的反相降压-升压转换器不同,后者的控制器在VIN和−VOUT之间“浮动”。在那种转换器中,可实现的最大−VOUT是控制器的最大VCC减去最大输入电压。这样的话就几乎不可能找到一种控制器能够驱动输出电压为-100V或更高的N沟道场效应晶体管。58Tednc

DI3-F1-201906.jpg58Tednc
图1:电感驱动反相电荷泵的简化功率级。58Tednc

电路的工作可分为三个阶段(如图2)。在第一个阶段,FET在占空比(d)期间导通,它在电感器上施加VIN,允许电流从零上升,从而存储能量。然而,在前一个周期中,C1(其保持大约等于VOUT的电压)耗尽了其过量存储的能量,反向偏置了D1和D2。这就是D1、D2和C1未在此阶段显示的原因。C2提供所有负载电流。58Tednc

在下一个阶段d’中,FET关断,电感电流开始放电,导致其电压极性反转。这大大增加了节点VFET处的电压,允许C1通过D1充电。在此阶段,电流倾降,直至D1关断。然而,由于D1的反向恢复特性,电流在最终关断之前变为反向,此时电感器电流斜率改变并且其电压极性再次反转。58Tednc

第三个阶段d'',能量从C1传递到C2。当D1停止导通时,由于VFET节点电压被强制接地(通过FET体二极管的电流通路),电感器电压被钳位到VIN。电流流过D2,直到C1和C2两端的电压相等,但通过FET体二极管的电流会持续直到电感电流减小到零。此时,电感器两端的电压崩溃,电路产生寄生效应,直到FET再次导通。58Tednc

DI3-F2-201906.jpg58Tednc
图2:DCM工作模式的三个阶段。58Tednc

图3详细介绍了关键电压和电流的波形。DCM工作模式允许尽可能小的电感,但可以有较高的峰值电流。DCM工作模式的电感在最大占空比、最小VIN和满载时确定。按照控制器数据表仔细检查最大占空比,通常可以选择60%~90%,否则可能发生脉冲跳跃。较大的电感会使工作进入连续导通模式(CCM),因为在下一个开关周期之前电流不会返回到零。这样,所用的电感可能比所需的要大,因此要加倍小心以防止次谐波振荡。58Tednc

DI3-F3-201906.jpg58Tednc
图3:DCM中的关键电路波形。58Tednc

设计公式

对于DCM工作模式,公式1很好地阐释了电感器如何存储能量:58Tednc

DI3-E1-201906.jpg58Tednc

其中ipk是峰值电感电流,η是转换器效率。峰值电感电流等于公式2:58Tednc
58Tednc
DI3-E2-201906.jpg58Tednc

由以下两个公式:58Tednc

DI3-E2-1-201906.jpg58Tednc

得到占空比(d):58Tednc

DI3-E3-201906.jpg58Tednc

由于VIN是FET导通时电感两端的电压,而ipk是占空比d结束时的电感电流,因此将公式2代入公式3得到公式4和5:58Tednc

DI3-E4-201906.jpg58Tednc

DI3-E5-201906.jpg58Tednc

在d'阶段,平均负载电流由公式6和7中的几何关系确定:58Tednc

DI3-E6-201906.jpg58Tednc

DI3-E7-201906.jpg58Tednc

将公式2代入公式7得到公式8:58Tednc

DI3-E8-201906.jpg58Tednc

该周期的剩余期间定义为d'',这时能量转移到C2并且剩余的电感电流放电到零(公式9):58Tednc

DI3-E9-201906.jpg58Tednc

图4是利用倍压器实现该转换器的原理图示例,其中允许每个功率级元件的电压应力等于满输出电压的一半。这使得组件的选择更加广泛。在这个应用中,计算出的电感就好像输出电压只有一半,而负载电流为两倍。58Tednc

DI3-F4-201906.jpg58Tednc
图4:带倍压器和电平转换电流镜的电感驱动反相电荷泵示意图。58Tednc

该转换器提供小型单电感器解决方案,用于产生较大的负电压。此外,它允许使用低成本接地参考升压控制器来驱动N沟道FET。58Tednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:How to design a high-voltage DCM inverting charge pump converter。)58Tednc

本文为《电子技术设计》2019年6月刊杂志文章。58Tednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 华为在5G行业终端生态峰会上发布白皮书,智能机器人加速 继松山湖华为2020开发者大会后,近日,“华为2020年5G行业终端生态峰会”在北京国家会议中心举行,会议上发布了《5G行业终端生态白皮书》。猎户星空作为华为5G行业终端生态合作伙伴,以成员身份见证了华为5G行业终端生态联盟的成立。
  • 安卓旗舰标配的屏下指纹,或将登上苹果iPhone 13 屏下指纹在安卓旗舰手机中早就普及,小米、OV、三星,以及华为等都配置了屏下指纹。可是,在屏下指纹领域,苹果一直没有动静,不过,最近有爆料称下一版本iPhone 13或将同时配备屏下指纹和Face ID传感器。
  • 苹果iPhone 12发布,A14芯片性能再次跃升,高通、三星谁能 苹果iPhone 12于今日正式发布了,芯片方面的亮点在于A14和5G,5G采用高通的基带集成在A14中。A14芯片性能的提升主要在于晶体管数量增多,GPU,NPU以及DSP信号处理技术。在高端手机芯片领域,除了苹果,仅有高通,三星了,还有被封杀的华为麒麟,那么谁能与A14一较高下?
  • 用模拟电荷泵产生高频高压脉冲 最近有一个项目评估了5G动态负载调制(DLM)射频功率放大器的可行性。DLM放大器通常会在其输出网络使用高压变容二极管,从而需要用高速大线性电压脉冲来驱动。
  • 利用混合信号示波器查找和诊断电源完整性问题导致的抖 本文使用MSO6B来演示抖动和电源轨道测量,因为其引起的噪声低,特别适合这些测量。该示波器配有数字电源管理(DPM)选项和高级抖动分析(DJA)。虽然我们以6系列B MSO为例,但5系列MSO也提供了相同的测量功能。
  • 超级电容器:电信和远程信息处理应用的电源管理策略 未来的数字世界有望为人们带来更舒适和更安全的生活。不过,自动驾驶、交通标志的自动检测以及许多其他功能都要求不间断的数据连接,因此需要安全稳定的持续电源供应。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了