向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

从谐波中找到信号的带宽

时间:2019-06-14 作者:Bob Witte 阅读:
在时域和频域中估算信号带宽的方法有很多种,比如之前讨论的信号上升时间和带宽的通用公式。信号完整性大师Eric Bogati n提供了经验法则2,即根据时钟频率来估算信号带宽。Eric强调,用上升时间来计算信号带宽是完全正确的,但使用经验法则2可以快速得到合理的答案。

在时域和频域中估算信号带宽的方法有很多种,比如我们之前讨论过的信号上升时间(tr)和带宽(f3db)之间的通用公式:MoJednc

DI4-E1-201906.pngMoJednc

信号完整性大师Eric Bogatin还提供了经验法则2,即根据时钟频率来估算信号带宽。Eric强调,用上升时间来计算信号带宽是完全正确的,但使用经验法则2可以快速得到合理的答案:MoJednc

DI4-E2-201906.pngMoJednc

Eric曾在他的文章中提出了一个关键性假设,即上升时间占整个周期的7%。这是一个合理的假设,可以让我们得出正确的上升时间。当然实际上有些信号会快些,有些会慢些。MoJednc

傅里叶级数

估算信号带宽的另一种方法是通过频域分析,具体地说就是使用傅里叶级数来估算。方波的傅里叶级数如图1所示。MoJednc

DI4-E3-201906.pngMoJednc

该级数具有无数个奇次谐波,它们组合起来代表方波。等式中有一个项是1/n,因此每个更高次谐波的振幅都小于前一个谐波。由于理想方波具有零上升时间,所以信号带宽将是无限的。换句话说,无限个谐波才能完美地表达方波。另外,时间标度是任意的,波形周期是十个时间单位。MoJednc
DI4-F1-201906.jpgMoJednc

图1:方波时域图,可采用任意时间和幅度标度,这里分别选择10和1。MoJednc

表1列出了从基波(n=1)到11次谐波的各个正弦波项的系数(零到峰值)。MoJednc

DI4-T1-201906.jpgMoJednc
表1:包含11次谐波的方波的傅里叶级数系数。MoJednc

我们来看看需要包含多少次谐波才能让波形看起来是一个像样的方波。图2仅显示了基频,即单纯的正弦波。MoJednc
MoJednc
DI4-F2-201906.jpgMoJednc

图2:与图1中方波相关的基频正弦波的峰值幅度为1.273。MoJednc

图3增加了三次谐波,波形开始像方波了。MoJednc

DI4-F3-201906.jpgMoJednc
图3:基波和三次谐波叠加的曲线开始像方波了。MoJednc

图4增加了五次谐波,现在看到的波形更接近方波。MoJednc

DI4-F4-201906.jpgMoJednc
图4:基波、三次和五次谐波图更加接近方波。MoJednc

每增加一次谐波,产生的波形看起来就更像方波。限于文章篇幅,这里就不展示表1列出的所有谐波了,图5显示了增加到11次谐波的波形。高次谐波使波形更加趋向方波,并只在波形的平坦部分存在高频波动。MoJednc

DI4-F5-201906.jpgMoJednc
图5:叠加到11次谐波的波形图变得非常接近方波。MoJednc

添加特定数量的谐波相当于在频域中应用“砖墙式”低通滤波器。波形中只包含所需的谐波,消除了高次谐波。这么说有点理想化,因为在真实世界中仍然会遇到一些频率响应,在逐渐衰减的过程中仍然残留一些高次谐波。MoJednc

上升时间

五次谐波的波形看起来已经很像样了,我们来仔细看看这种情况。图6中将五次谐波波形的水平轴扩展了,这样就可以利用图形技术确定上升时间。MoJednc

DI4-F6-201906.jpgMoJednc
图6:扩展的时间标度显示了五次谐波波形的上升时间。MoJednc

让我们找到波形上10%和90%的点并估算上升时间。总信号摆幅为2个单位,因此10%和90%的点分别对应-0.8和+0.8。上升时间为2×0.37=0.74单位。回想一下,波形的周期是10,因而上升时间是0.74/10,约等于整个周期的7%。现在,体会到它的有趣之处了吗?这非常接近经验法则2中假设的7%上升时间。当然,选择叠加五次谐波是根据波形形状随意做出的决定。但这的确是个不错的选择!我们有可能需要更多或者更少谐波,这都要视具体的应用而定。MoJednc

总而言之,我们使用傅里叶级数分析来确定方波中的谐波幅度,然后估算由基波加上三次和五次谐波组成的方波的上升时间,结果与根据经验法则2估算出的数字信号的带宽(时钟频率的五倍)结果非常一致。MoJednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Find a signal's bandwidth from its harmonics。)MoJednc

本文为《电子技术设计》2019年6月刊杂志文章。MoJednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bob Witte
Bob Witte在Keysight Technologies、Agilent Technologies和Hewlett-Packard Company的研发、技术规划、战略规划和制造部门担任过多个职位,目前是技术咨询公司Signal Blue LLC的总裁。 从内心深处,他只不过是一名乐于看到用创新产品来解决真正的客户问题的一名工程师。Bob写了两本关于测试和测量仪器的书:《电子测试仪器》和《频谱和网络测量》。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 哪些元器件最容易引发电路故障? 电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小;完全失去容量;漏电;短路。
  • 实用风席卷EMC/SIPI年度大会 着重探讨电磁兼容性(EMC)、信号完整性(SI)和电源完整性(PI)的IEEE EMC+SIPI 2019年度大会与往年的最大不同是有更多的实际展示和技术研讨会。在这次会议上,EMC基础知识、实用技术内容和学术论文之间首次找到了平衡。此外,此次大会更加关注年轻的专业人士,因为一些“资深人士”开始退休,这些技能需要传给下一代。
  • 用二极管得出对数和指数,对交直流电流实现光学传感 为了最大程度地降低电流采样电阻器引起的效率损耗和功率损耗,其电阻通常限制为毫欧级,所得IR电压为毫伏级,并且所产生的小信号可能会持续存在,需要从带有数十伏或数百伏的电源轨的共模当中提取出,并且有大噪声分量存在。这些设计挑战在许多创新拓扑和专用器件的开发中都有所反映。本文从另一个角度解决了这个经典问题。
  • 仅用一个100Ω电阻,就能解决电路振荡问题? 我刚工作进了一家模拟电子大公司,碰到一个关于放大器电路稳定性的问题带容性负载的缓冲放大器电路像鸟儿在唱歌。“加一个100Ω的负载电阻,” 一个工程师告诉我,“相信我吧,肯定没错。”我依言新建了一个电路,可是电路还在振荡……
  • 用于电机控制的优化∑-∆调制电流测量 在高性能电机和伺服驱动器中,基于隔离式sigma-delta(Σ-Δ)的模数转换器(ADC)已成为首选的相电流测量方法。这些转换器以其强大的电流隔离和卓越的测量性能而闻名。随着新一代ADC的推出,其性能也在不断提高,但是,要充分利用最新的ADC的功能,就需要对其他的电机驱动器进行相应的设计。
  • 热回路究竟是什么? 当涉及到开关稳压器及其电磁兼容性(EMC)时,总是会提到热回路。尤其是优化印刷电路板上的走线布局时,更是离不开这个话题。但热回路到底指的是什么?
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告