广告

从谐波中找到信号的带宽

时间:2019-06-14 作者:Bob Witte 阅读:
在时域和频域中估算信号带宽的方法有很多种,比如之前讨论的信号上升时间和带宽的通用公式。信号完整性大师Eric Bogati n提供了经验法则2,即根据时钟频率来估算信号带宽。Eric强调,用上升时间来计算信号带宽是完全正确的,但使用经验法则2可以快速得到合理的答案。

在时域和频域中估算信号带宽的方法有很多种,比如我们之前讨论过的信号上升时间(tr)和带宽(f3db)之间的通用公式:

DI4-E1-201906.png

信号完整性大师Eric Bogatin还提供了经验法则2,即根据时钟频率来估算信号带宽。Eric强调,用上升时间来计算信号带宽是完全正确的,但使用经验法则2可以快速得到合理的答案:

DI4-E2-201906.png

Eric曾在他的文章中提出了一个关键性假设,即上升时间占整个周期的7%。这是一个合理的假设,可以让我们得出正确的上升时间。当然实际上有些信号会快些,有些会慢些。

傅里叶级数

估算信号带宽的另一种方法是通过频域分析,具体地说就是使用傅里叶级数来估算。方波的傅里叶级数如图1所示。

DI4-E3-201906.png

该级数具有无数个奇次谐波,它们组合起来代表方波。等式中有一个项是1/n,因此每个更高次谐波的振幅都小于前一个谐波。由于理想方波具有零上升时间,所以信号带宽将是无限的。换句话说,无限个谐波才能完美地表达方波。另外,时间标度是任意的,波形周期是十个时间单位。
DI4-F1-201906.jpg

图1:方波时域图,可采用任意时间和幅度标度,这里分别选择10和1。

表1列出了从基波(n=1)到11次谐波的各个正弦波项的系数(零到峰值)。

DI4-T1-201906.jpg
表1:包含11次谐波的方波的傅里叶级数系数。

我们来看看需要包含多少次谐波才能让波形看起来是一个像样的方波。图2仅显示了基频,即单纯的正弦波。

DI4-F2-201906.jpg

图2:与图1中方波相关的基频正弦波的峰值幅度为1.273。

图3增加了三次谐波,波形开始像方波了。

DI4-F3-201906.jpg
图3:基波和三次谐波叠加的曲线开始像方波了。

图4增加了五次谐波,现在看到的波形更接近方波。

DI4-F4-201906.jpg
图4:基波、三次和五次谐波图更加接近方波。

每增加一次谐波,产生的波形看起来就更像方波。限于文章篇幅,这里就不展示表1列出的所有谐波了,图5显示了增加到11次谐波的波形。高次谐波使波形更加趋向方波,并只在波形的平坦部分存在高频波动。

DI4-F5-201906.jpg
图5:叠加到11次谐波的波形图变得非常接近方波。

添加特定数量的谐波相当于在频域中应用“砖墙式”低通滤波器。波形中只包含所需的谐波,消除了高次谐波。这么说有点理想化,因为在真实世界中仍然会遇到一些频率响应,在逐渐衰减的过程中仍然残留一些高次谐波。

上升时间

五次谐波的波形看起来已经很像样了,我们来仔细看看这种情况。图6中将五次谐波波形的水平轴扩展了,这样就可以利用图形技术确定上升时间。

DI4-F6-201906.jpg
图6:扩展的时间标度显示了五次谐波波形的上升时间。

让我们找到波形上10%和90%的点并估算上升时间。总信号摆幅为2个单位,因此10%和90%的点分别对应-0.8和+0.8。上升时间为2×0.37=0.74单位。回想一下,波形的周期是10,因而上升时间是0.74/10,约等于整个周期的7%。现在,体会到它的有趣之处了吗?这非常接近经验法则2中假设的7%上升时间。当然,选择叠加五次谐波是根据波形形状随意做出的决定。但这的确是个不错的选择!我们有可能需要更多或者更少谐波,这都要视具体的应用而定。

总而言之,我们使用傅里叶级数分析来确定方波中的谐波幅度,然后估算由基波加上三次和五次谐波组成的方波的上升时间,结果与根据经验法则2估算出的数字信号的带宽(时钟频率的五倍)结果非常一致。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Find a signal's bandwidth from its harmonics。)

本文为《电子技术设计》2019年6月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bob Witte
Bob Witte在Keysight Technologies、Agilent Technologies和Hewlett-Packard Company的研发、技术规划、战略规划和制造部门担任过多个职位,目前是技术咨询公司Signal Blue LLC的总裁。 从内心深处,他只不过是一名乐于看到用创新产品来解决真正的客户问题的一名工程师。Bob写了两本关于测试和测量仪器的书:《电子测试仪器》和《频谱和网络测量》。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 【理论篇】示波器上的频域分析利器--时频域信号分析技 这是第二篇理论篇,主要介绍Spectrum View架构、FFT等内容。
  • 两个过不了出厂测试的“黑盒子”,用一个电阻搞定? 两个过不了出厂测试的“黑盒子”,是并联缓冲器导致故障,还是时钟线上的回波引发故障?解决问题的最好办法是让时钟缓冲器芯片不再并联,还是在两个输出之间串联一个小电阻?
  • 为厨房电器增加触摸功能 五年前,为厨房电器和洗衣电器配备触摸屏还只是CES上提出的概念,目的是吸引与会者及展现公司的远见卓识。如今至少对于少数高端电器而言,带触摸屏的白色家电产品已成为现实。
  • 使用它或者转换它 如果输出只需要每微秒转移5V电压,那么一个可保证最小5V/μs压摆率的放大器,再加一点安全裕度,就能够很好地产生我们所需的输出电压吗?实际上并非如此,因为如果让运算放大器的输出接近数据手册里的最大速率,输出可能很不准确,因此有时需要指定一个比信号需要的转换速率高得多的压摆率。
  • 为什么智能功率音频放大器对智能手机越来越重要 多年来,手机的屏幕尺寸变得越来越大,但音频体验并不总能并驾齐驱,特别是在“响亮”喇叭模式下。 因此,更多的高端手机提供立体声作为附加功能,智能手机和其他音频播放设备中采用立体声音频的趋势表明,音频放大器在智能手机设计中扮演着尤为重要的角色。
  • S参数究竟是什么? 传统上,ADC信号和时钟输入都采用集总元件模型来表示。但是对于RF采样转换器而言,其工作频率已经增加至需要采用分布式表示的程度,那么原有的方法就不适用了。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告