广告

电源完整性还有新招?

2019-07-08 10:22:54 Raj Nair 阅读:
保证电源完整性(PI)最常见的方法是增加片上去耦电容,此方法特别适于解决电压下垂和其他动态电源差分变化。在新的制造工艺或器件偏置配置中,电路功能和噪声的硅验证无法被替代。因此,在电压可变的情况下,片上去耦电容效应必须在硅中进行验证,通过其物理性能来了解器件性能并进行建模。

依赖于电压的去耦电容

保证电源完整性(PI)最常见的方法是增加片上去耦电容,此方法特别适于解决电压下垂和其他动态电源差分变化。在负载电路中,本地电容吸收瞬态电源电流,有助于满足瞬态电荷需求。但由于电容是“无功”电路元件,只有在电压变化时才会提供电荷,这里i(t)=C(dv/dt),所以,电容通过提供电荷来降低电压下垂,而且仅在发生电压下垂时才会提供电荷。cmpednc

现在我们来看看依赖于电压的电容元件,其电容随电容器极板间的电压而变化,如图1所示。cmpednc

DI1-F1-201907.jpgcmpednc
图1:电容是电压的线性函数。cmpednc

电容C是所施加的电压V的线性函数,而电荷量Q呈平方变化,所以,在依赖于电压的电容中,电荷量随电压的变化率dQ/dV部分地与kV成正比。当电容充满电时,与恒定电容器相比,依赖于电压的电容中的电荷以更快的速率(C0+kV>C)耗尽。因此,当迁移的电荷量ΔQ相同时,在依赖于电压的电容中,电压降低较少。这一点也可以理解为:在给定工作电压Vdd时,使恒定电容器的电荷存储量为C1Vddcmpednc

在独立于电压的电容器中,迁移的电荷量ΔQ可以通过电压变化为Vn1来反映。而对依赖于电压的电容,相同的ΔQ电荷迁移量产生电压Vn2和电容Cn2(小于Vdd处依赖于电压的电容)。根据电荷守恒定律,ΔQ很小时,C1ΔV1≈C2ΔV2,其中ΔV是电压的减小量。由于C2(=C0+kVdd)大于C1(通过二次充电存储相同的总电荷),ΔV2小于ΔV1。最终得出了一个大致的关系式:cmpednc

DI1-E1-201907.pngcmpednc

如图2所示,在以累积耗尽模式工作的MOSFET器件中(图中右侧),电容随电压显著变化。因此,在给定工作电源电压下可以设计和偏置器件,以显示其电压依赖性,尽管该特性可能受带宽限制。相较于在传统的沟道反转模式下工作的器件,工作于累积耗尽区的MOSFET器件表现出更低的栅极氧化物泄漏。由于提供了对偏置器件的激励,这种去耦电容在IC中被广泛采用。(注意:英特尔公司130nm节点以下的芯片被认为采用了这种片上去耦电容。)cmpednc

DI1-F2-201907.jpgcmpednc
图2:采用深亚微米制造工艺的MOSFET器件,从反转模式到累积模式,其栅极电压与电容的关系。cmpednc

电压可变电容中的电荷和能量

表现出图2所示行为的电容器中包含的电荷和能量可以推导如下:cmpednc

由于C=C0+kV,电压可变电容器的电荷量Q为:cmpednc

DI1-E2-201907.pngcmpednc

假设当Q=0时V=0。当k=0时,等式简化为Q=CV;当C0=0时,Q=½kV2=½CV。电压可变电容中包含的电荷量呈二次方上升;当基极电容为零时,是在电容不依赖于电压的情况下电荷量的一半。因此,选择C0和k必须确保两种情况下存储的总电荷量相同。cmpednc

类似地,在电压可变的电容内,能量可以从因电荷增加而增加的工作中得到:cmpednc

DI1-E2-1-201907.pngcmpednc

因为C=C0+k·V,电压可变电容的能量为:cmpednc

DI1-E3-201907.pngcmpednc

同样,当k=0时,上述表达式简化为恒定电容器储存能量的已知表达式。有趣的是,令C0=0和k=2C/V,使存储的总电荷与恒定电容器相同,由电压可变电容能量表达式得到值(2/3)CV2,与恒定电容器相比高出六分之一的能量。cmpednc

此外,对于上面讨论的电容依赖于电压的情况,还可以对产生的电源电压噪声进行比较,如下所示:cmpednc

DI1-E3-1-201907.pngcmpednc

DI1-E3-2-201907.pngcmpednc

因 为 (Vn2+Vdd ) ≈2·Vdd 及 | Vn2-Vdd|=ΔVd2, 结果与公式(1)一致。cmpednc

然而,电压可变电容对电源完整性的影响是一个复杂的现象,并不像图1或公式(1)所示的那样容易建模。如图2所示,器件电容随电压的变化源于半导体材料内的非理想电荷分布。随着施加的偏压增加到器件呈现正电压系数的区域,器件的两个栅极氧化物隔离部分的电荷之间的有效距离从其无偏值变小。这导致器件的极板之间的有效电隔离减小,电容因之增加,因为电容值C=єA/d。cmpednc

在器件工作时,其电气特性发生变化,而器件正是以其固有电气性质变化的形式存储电荷和能量的。对于平行板电容器,弹簧将极板连接到刚性表面,并使它们彼此分开。随着极板上差分电荷增加,极板彼此吸引,减小了它们之间的距离,增加了有效电容。同时,能量也存储在因极板运动产生的弹簧的位移中。因此,需要一个电物理分析模型。cmpednc

上述讨论强调了之前提到的真实物理建模的必要性。在依赖于电压的去耦电容中,通过固定的分布电容来近似有效电容值,以提供足以用于布局规划的合理、准确的噪声估计。最常见的情况是,在新的制造工艺或器件偏置配置中,电路功能和噪声的硅验证无法被替代。因此,在电压可变的情况下,片上去耦电容效应必须在硅中进行验证,通过其物理性能来了解器件性能并进行建模。cmpednc

(原文刊登于ASPENCORE旗下Planet Analog网站,参考链接:Nothing New in Power Integrity?)cmpednc

本文为《电子技术设计》2019年7月刊杂志文章。cmpednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了