广告

使用近场探头探测DC-DC转换器电磁干扰

2019-08-13 Kenneth Wyatt 阅读:
使用近场探头探测DC-DC转换器电磁干扰
板载DC-DC转换器产生的电磁干扰(EMI)是物联网产品的常见问题。EMI会影响敏感接收器电路的灵敏度,尤其是蜂窝和全球导航卫星系统(GNSS)。测量 DC-DC转换器EMI性能的一种有效方式是在时域中使用小型磁场(H-field)探头测量上升时间和振铃。通过将磁场探头耦合到转换器输出电感器,实现非侵入 性测量。

板载DC-DC转换器产生的电磁干扰(EMI)是物联网产品的常见问题。这些小电路通常在1MHz和3MHz之间以亚纳秒级边缘速率快速切换,结果产生超过2GHz的宽带EMI。EMI会影响敏感接收器电路的灵敏度,尤其是蜂窝和全球导航卫星系统(GNSS)。fJIednc

测量DC-DC转换器EMI性能的一种有效方式是在时域中使用小型磁场(H-field)探头测量上升时间和振铃。通过将磁场探头耦合到转换器输出电感器,即可实现非侵入性测量(如图1所示)。fJIednc

DI1-F1-201908.jpgfJIednc
图1:将探头耦合到输出电感器来探测典型物联网板板载DC-DC电源转换器产生的波形。电感器采用相对较大的圆形封装,所以很容易识别。如图所示,探头应摆平,以实现最大耦合。fJIednc

检测开关波形上的振铃很重要,因为振铃频率可以转变为发射特性中的宽峰值。磁场探头快速而安全,因为它不需要直接连接到电路,只需耦合到DC-DC转换器输出电感器即可。fJIednc

Rohde&Schwarz HZ-15近场探头套件包括几个磁场探头(或环)。由于想要耦合的是走线和元件中的电流,因此采用了这个类型。最大的那个探头太敏感,分辨率太低,不足以隔离发射源。另一个直径约1厘米的较小探头(型号RS H 50-1),适合在板级识别和探测EMI。简单地将探头连接到50Ω示波器输入端,进行调整,可以获得显示良好的波形。fJIednc

[编者注:Beehive、Com-Power、ETS-Lindgren、Keysight Technologies、Langer EMV、TekBox、Tektronix等公司均提供EMI探头套件。]fJIednc

我们用数学方法来验证这种特征化测量(如图2所示)。在电感器和磁场探头之间可能存在某个未知的互耦因子(即下面等式中的M)。由于我们不知道该互耦因子到底是多少,所以无法对振幅与示波器探头实际测量的值进行比较。因为我们的目标是EMI,所以在这里主要关注上升时间、一般开关波形和振铃频率(如果有的话)。fJIednc

DI1-F2-201908.jpgfJIednc
图2:DC-DC转换器输出电感器的开关波形(SW)通过互感(M)耦合到磁场探头。fJIednc

DC-DC转换器通常具有准方波信号(VL),从转换器开关节点(SW)和输出电感器(L)输入流到地回路,这就是我们要用示波器探头进行测量的信号。通过电感的电流与电压的关系如下:fJIednc

DI1-E1-201908.pngfJIednc

假设磁场探头靠近电感器,得到一些互耦,M(未知),探头的输出是:fJIednc

DI1-E2-201908.pngfJIednc

合并前面两个公式,得出:fJIednc

DI1-E3-201908.pngfJIednc

然后提出常数M/L,得出VOUT∝V。fJIednc

由于VOUT与VL成正比,因此可以轻松快速地测量最重要的EMI特性,而不会与示波器探针产生连接短路。将磁场探头靠近每个DC-DC转换器电感器,可以测量上升时间(表示谐波频率的上限)、脉冲宽度和周期(也考虑谐波频率),以及振铃频率(在宽带频谱中会导致出现宽谐振峰值)。fJIednc

图3和图4比较了带宽为GHz的RT-ZS20 1.5示波器探头(带短探针)和RS H 50-1磁场探头的开关波形特性。除振幅外,测量结果类似。fJIednc

DI1-F3-201908.jpgfJIednc
图3:使用耦合磁场探头(上部迹线)和直连单端探头(下部迹线)测量典型物联网设备的DC-DC转换器输出电感,显示了相似的波形。但使用磁场探头可以快速测量上升时间、周期和振铃,而没有电路短路的风险。fJIednc

DI1-F4-201908.jpgfJIednc
图4:DC-DC转换器的振铃测量,可能在8MHz时产生EMI宽峰值(加上高次谐波)。fJIednc

将同样的磁场探头连接到Siglent SSA 3032X频谱分析仪,其起始和终止频率分别为1和500MHz,且具有120kHz的分辨率带宽,结果在宽带频谱内得到8MHz谐振峰值(如图5所示)。fJIednc

DI1-F5-201908.jpgfJIednc
图5:DC-DC转换器产生的宽带频谱在Marker1处显示出8MHz谐振峰值。fJIednc

在我见过的许多案例中,振铃频率很容易发生在100MHz左右,引起发射频谱的宽峰值,在这种情况下,如果耦合到天线状结构(通常是电缆),则可能导致EMI故障。fJIednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Characterize DC-DC converter EMI with near-field probes。)fJIednc

本文为《电子技术设计》2019年8月刊杂志文章。fJIednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深入理解汽车电子的ESD之控制器篇 正确理解ESD的内容对于汽车电子设计是非常有帮助的,本文仅就ESD之控制器的以下内容展开讨论:控制器ESD测试项需求解读;ESD保护电路设计要点;ESD测试标准。
  • 如何提高系统的ESD的承受能力? ESD关乎电路的生存,但您也应该考虑功能性的干扰。这也许包括需很长恢复时间的模拟电路过载。在数字电路或系统处理器中的受干扰比特会是个更大的问题……
  • 针对恶劣工业环境选择以太网的三大注意事项 在本文中,我将简要描述为您的系统选择以太网物理层时要考虑的三个更重要的因素。
  • 对电池供电设备提供保护的极性校正电路 早前概述的一种极性保护电路,可以将电池正确连接到负载,而不论电池在其底座中的方向如何。这个电路可以工作,但存在一些缺点。它的电源电压范围有一定的局限(1.8~5.5V),并且内部电阻略高,因此只能用于电流负荷不超过30mA的产品。幸运的是,由于MOSFET技术的一些重大进步,现在可以克服这些局限。
  • 深入理解汽车电子的ESD之元器件篇 正确理解ESD的内容对于汽车电子设计是非常有帮助的,本文仅就ESD元器件的以下内容展开讨论:(1) 数据手册参数解读;(2) ESD执行的标准;(3) ESD测试标准。
  • 当心回路增益 本文利用一个总反馈为单位增益电压跟随器的运算放大器简化模型,对回路增益展开深入讨论。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了