广告

使用近场探头探测DC-DC转换器电磁干扰

2019-08-13 Kenneth Wyatt 阅读:
使用近场探头探测DC-DC转换器电磁干扰
板载DC-DC转换器产生的电磁干扰(EMI)是物联网产品的常见问题。EMI会影响敏感接收器电路的灵敏度,尤其是蜂窝和全球导航卫星系统(GNSS)。测量 DC-DC转换器EMI性能的一种有效方式是在时域中使用小型磁场(H-field)探头测量上升时间和振铃。通过将磁场探头耦合到转换器输出电感器,实现非侵入 性测量。

板载DC-DC转换器产生的电磁干扰(EMI)是物联网产品的常见问题。这些小电路通常在1MHz和3MHz之间以亚纳秒级边缘速率快速切换,结果产生超过2GHz的宽带EMI。EMI会影响敏感接收器电路的灵敏度,尤其是蜂窝和全球导航卫星系统(GNSS)。TNPednc

测量DC-DC转换器EMI性能的一种有效方式是在时域中使用小型磁场(H-field)探头测量上升时间和振铃。通过将磁场探头耦合到转换器输出电感器,即可实现非侵入性测量(如图1所示)。TNPednc

DI1-F1-201908.jpgTNPednc
图1:将探头耦合到输出电感器来探测典型物联网板板载DC-DC电源转换器产生的波形。电感器采用相对较大的圆形封装,所以很容易识别。如图所示,探头应摆平,以实现最大耦合。TNPednc

检测开关波形上的振铃很重要,因为振铃频率可以转变为发射特性中的宽峰值。磁场探头快速而安全,因为它不需要直接连接到电路,只需耦合到DC-DC转换器输出电感器即可。TNPednc

Rohde&Schwarz HZ-15近场探头套件包括几个磁场探头(或环)。由于想要耦合的是走线和元件中的电流,因此采用了这个类型。最大的那个探头太敏感,分辨率太低,不足以隔离发射源。另一个直径约1厘米的较小探头(型号RS H 50-1),适合在板级识别和探测EMI。简单地将探头连接到50Ω示波器输入端,进行调整,可以获得显示良好的波形。TNPednc

[编者注:Beehive、Com-Power、ETS-Lindgren、Keysight Technologies、Langer EMV、TekBox、Tektronix等公司均提供EMI探头套件。]TNPednc

我们用数学方法来验证这种特征化测量(如图2所示)。在电感器和磁场探头之间可能存在某个未知的互耦因子(即下面等式中的M)。由于我们不知道该互耦因子到底是多少,所以无法对振幅与示波器探头实际测量的值进行比较。因为我们的目标是EMI,所以在这里主要关注上升时间、一般开关波形和振铃频率(如果有的话)。TNPednc

DI1-F2-201908.jpgTNPednc
图2:DC-DC转换器输出电感器的开关波形(SW)通过互感(M)耦合到磁场探头。TNPednc

DC-DC转换器通常具有准方波信号(VL),从转换器开关节点(SW)和输出电感器(L)输入流到地回路,这就是我们要用示波器探头进行测量的信号。通过电感的电流与电压的关系如下:TNPednc

DI1-E1-201908.pngTNPednc

假设磁场探头靠近电感器,得到一些互耦,M(未知),探头的输出是:TNPednc

DI1-E2-201908.pngTNPednc

合并前面两个公式,得出:TNPednc

DI1-E3-201908.pngTNPednc

然后提出常数M/L,得出VOUT∝V。TNPednc

由于VOUT与VL成正比,因此可以轻松快速地测量最重要的EMI特性,而不会与示波器探针产生连接短路。将磁场探头靠近每个DC-DC转换器电感器,可以测量上升时间(表示谐波频率的上限)、脉冲宽度和周期(也考虑谐波频率),以及振铃频率(在宽带频谱中会导致出现宽谐振峰值)。TNPednc

图3和图4比较了带宽为GHz的RT-ZS20 1.5示波器探头(带短探针)和RS H 50-1磁场探头的开关波形特性。除振幅外,测量结果类似。TNPednc

DI1-F3-201908.jpgTNPednc
图3:使用耦合磁场探头(上部迹线)和直连单端探头(下部迹线)测量典型物联网设备的DC-DC转换器输出电感,显示了相似的波形。但使用磁场探头可以快速测量上升时间、周期和振铃,而没有电路短路的风险。TNPednc

DI1-F4-201908.jpgTNPednc
图4:DC-DC转换器的振铃测量,可能在8MHz时产生EMI宽峰值(加上高次谐波)。TNPednc

将同样的磁场探头连接到Siglent SSA 3032X频谱分析仪,其起始和终止频率分别为1和500MHz,且具有120kHz的分辨率带宽,结果在宽带频谱内得到8MHz谐振峰值(如图5所示)。TNPednc

DI1-F5-201908.jpgTNPednc
图5:DC-DC转换器产生的宽带频谱在Marker1处显示出8MHz谐振峰值。TNPednc

在我见过的许多案例中,振铃频率很容易发生在100MHz左右,引起发射频谱的宽峰值,在这种情况下,如果耦合到天线状结构(通常是电缆),则可能导致EMI故障。TNPednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Characterize DC-DC converter EMI with near-field probes。)TNPednc

本文为《电子技术设计》2019年8月刊杂志文章。TNPednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 基于尖端放电的PCB板载锯齿状铜皮抗静电设计(超低成本) 静电对电路的危害很大,静电的瞬间电压为几千伏到几十万伏,冬天人体静电至少在几万伏以上,如此大的静电进入电路后会对电路中较弱的元器件如芯片等造成致命损伤,因此电路静电保护一直是电路设计不可缺少的环节。
  • 利用有源滤波实现开关电源EMI衰减 有源滤波的好处是减少了DC/DC解决方案的整体体积,这主要是因为抵消电路只需要使用小得多的无源滤波器,而不是较大的“蛮力”无源滤波器。
  • 对大型系统进行现场预一致性测试 大型工业系统需要采用完全不同的技术来评估辐射发射。它们通常要使用固定的三相电源,并且由许多不同的子系统组成。
  • 为什么美国蝉灾爆发周期是质数? 2021年,美国蝉灾(17年蝉)爆发。在此期间,它们共同产生的噪声几乎与直管摩托车一样大。与此同时,美国还有另一种13年蝉。那么,为什么这两种蝉会以这两个不同的循环年数出现,而且又都是质数呢?
  • 三种降低电容声学噪声的方法 当在音频频率下工作时,某些表贴电容会表现出噪声。有三种方法可以用来降低它。
  • 如何通过集成式有源EMI滤波器降低EMI并缩小电源尺寸? 前端无源滤波可减少开关电源产生的传导性EMI,但这种方法可能与增加低EMI 设计的功率密度的要求相矛盾。这些无源滤波器往往体积庞大,可占电源方案总体积的30%。因此,在提高功率密度的同时,有效缩小EMI滤波器体积仍是系统设计人员的首要任务。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了