广告

使用近场探头探测DC-DC转换器电磁干扰

2019-08-13 Kenneth Wyatt 阅读:
使用近场探头探测DC-DC转换器电磁干扰
板载DC-DC转换器产生的电磁干扰(EMI)是物联网产品的常见问题。EMI会影响敏感接收器电路的灵敏度,尤其是蜂窝和全球导航卫星系统(GNSS)。测量 DC-DC转换器EMI性能的一种有效方式是在时域中使用小型磁场(H-field)探头测量上升时间和振铃。通过将磁场探头耦合到转换器输出电感器,实现非侵入 性测量。

板载DC-DC转换器产生的电磁干扰(EMI)是物联网产品的常见问题。这些小电路通常在1MHz和3MHz之间以亚纳秒级边缘速率快速切换,结果产生超过2GHz的宽带EMI。EMI会影响敏感接收器电路的灵敏度,尤其是蜂窝和全球导航卫星系统(GNSS)。MBzednc

测量DC-DC转换器EMI性能的一种有效方式是在时域中使用小型磁场(H-field)探头测量上升时间和振铃。通过将磁场探头耦合到转换器输出电感器,即可实现非侵入性测量(如图1所示)。MBzednc

DI1-F1-201908.jpgMBzednc
图1:将探头耦合到输出电感器来探测典型物联网板板载DC-DC电源转换器产生的波形。电感器采用相对较大的圆形封装,所以很容易识别。如图所示,探头应摆平,以实现最大耦合。MBzednc

检测开关波形上的振铃很重要,因为振铃频率可以转变为发射特性中的宽峰值。磁场探头快速而安全,因为它不需要直接连接到电路,只需耦合到DC-DC转换器输出电感器即可。MBzednc

Rohde&Schwarz HZ-15近场探头套件包括几个磁场探头(或环)。由于想要耦合的是走线和元件中的电流,因此采用了这个类型。最大的那个探头太敏感,分辨率太低,不足以隔离发射源。另一个直径约1厘米的较小探头(型号RS H 50-1),适合在板级识别和探测EMI。简单地将探头连接到50Ω示波器输入端,进行调整,可以获得显示良好的波形。MBzednc

[编者注:Beehive、Com-Power、ETS-Lindgren、Keysight Technologies、Langer EMV、TekBox、Tektronix等公司均提供EMI探头套件。]MBzednc

我们用数学方法来验证这种特征化测量(如图2所示)。在电感器和磁场探头之间可能存在某个未知的互耦因子(即下面等式中的M)。由于我们不知道该互耦因子到底是多少,所以无法对振幅与示波器探头实际测量的值进行比较。因为我们的目标是EMI,所以在这里主要关注上升时间、一般开关波形和振铃频率(如果有的话)。MBzednc

DI1-F2-201908.jpgMBzednc
图2:DC-DC转换器输出电感器的开关波形(SW)通过互感(M)耦合到磁场探头。MBzednc

DC-DC转换器通常具有准方波信号(VL),从转换器开关节点(SW)和输出电感器(L)输入流到地回路,这就是我们要用示波器探头进行测量的信号。通过电感的电流与电压的关系如下:MBzednc

DI1-E1-201908.pngMBzednc

假设磁场探头靠近电感器,得到一些互耦,M(未知),探头的输出是:MBzednc

DI1-E2-201908.pngMBzednc

合并前面两个公式,得出:MBzednc

DI1-E3-201908.pngMBzednc

然后提出常数M/L,得出VOUT∝V。MBzednc

由于VOUT与VL成正比,因此可以轻松快速地测量最重要的EMI特性,而不会与示波器探针产生连接短路。将磁场探头靠近每个DC-DC转换器电感器,可以测量上升时间(表示谐波频率的上限)、脉冲宽度和周期(也考虑谐波频率),以及振铃频率(在宽带频谱中会导致出现宽谐振峰值)。MBzednc

图3和图4比较了带宽为GHz的RT-ZS20 1.5示波器探头(带短探针)和RS H 50-1磁场探头的开关波形特性。除振幅外,测量结果类似。MBzednc

DI1-F3-201908.jpgMBzednc
图3:使用耦合磁场探头(上部迹线)和直连单端探头(下部迹线)测量典型物联网设备的DC-DC转换器输出电感,显示了相似的波形。但使用磁场探头可以快速测量上升时间、周期和振铃,而没有电路短路的风险。MBzednc

DI1-F4-201908.jpgMBzednc
图4:DC-DC转换器的振铃测量,可能在8MHz时产生EMI宽峰值(加上高次谐波)。MBzednc

将同样的磁场探头连接到Siglent SSA 3032X频谱分析仪,其起始和终止频率分别为1和500MHz,且具有120kHz的分辨率带宽,结果在宽带频谱内得到8MHz谐振峰值(如图5所示)。MBzednc

DI1-F5-201908.jpgMBzednc
图5:DC-DC转换器产生的宽带频谱在Marker1处显示出8MHz谐振峰值。MBzednc

在我见过的许多案例中,振铃频率很容易发生在100MHz左右,引起发射频谱的宽峰值,在这种情况下,如果耦合到天线状结构(通常是电缆),则可能导致EMI故障。MBzednc

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Characterize DC-DC converter EMI with near-field probes。)MBzednc

本文为《电子技术设计》2019年8月刊杂志文章。MBzednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 什么是EMI?降低开关模式电源中EMI的常规方法有哪些?最新 文章介绍了降低开关模式电源中EMI的常用方法以及最新技术。
  • ST:工业自动化中的PLC方案 在ASPENCORE“深圳国际工业4.0技术与应用峰会”上,意法半导体策略市场经理冯国柱分享了“工业自动化中的PLC方案”主题演讲。
  • 减少无线/物联网设备EMI的若干问题解读(上) 要减少无线和物联网设备自我产生的EMI,关键方法之一是实现适当的PCB设计。最近我就这个主题主持了一场很长的网络研讨会,探讨了几个有关PCB设计和降低DC-DC转换器EMI的问题,我的回答如下。
  • 利用控制回路优化工具简化电源转换器设计 以往,转换器制造商除了依靠电源模块专家的专业知识来设计滤波器,优化控制回路,然后得到结果以外,别无其他选择。现在,这个时代已经一去不复返。系统设计人员现在可以使用免费软件来快速、容易地得到结果。电源系统设计软件中嵌入的环路补偿工具已经得到发展,工程师在概念阶段可以利用它来优化电压,这样就可以方便地尝试不同的配置,然后重新运行仿真,直到获得最佳结果。那么,推动这一进步的工程原理是什么?
  • 专访芯和(Xpeedic)创始人兼CEO凌峰:拥抱IPD的增长与机遇 <p style="text-align:left">全球知名半导体产业研究机构Yole Développement,一直以来因其对射频前端市场的权威研究和预测,成为引领行业的风向标。最近几年,Yole对芯和半导体的关注持续升温:<br> 2019年Yole在“5G's Impact on RF Front-End Module and Connectivity for Cell Phones 2019" 报告中首次把芯和定位为全球IPD滤波器领先供应商;<br> 2020年在"Thin-Film Integrated Passive Devices"报告中关注了芯和创新的定制IPD设计;<br> 2021新年伊始,随着5G的不断发展,Yole就芯和打造的射频前端无源器件新形态对芯和进行了专访,双方就芯和创新的IPD设计平台、IPD相对LTCC的优势和发展趋势、快速发展的中国生态圈以及芯和在其中的重要作用等方面进行了深入的探讨。</p>
  • 小小被动元器件也有大学问 在“高性能被动元器件发展论坛”上,七家厂商分享了有关高性能被动元器件的发展趋势及技术挑战等热门主题。会议最后还召开“国产高性能被动器件的机会和挑战”的圆桌论坛,共同探讨了被动元器件之高性能与挑战、国产化进程、缺货涨价和应对方法,以及市场应用四个重要议题。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了