向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

高效电源管理架构加速量子计算机商用化

时间:2019-10-04 作者:Steve Taranovich 阅读:
迄今为止还没有成熟的量子计算机出现,文章讨论了超级计算机的电源需求、百亿亿级(Exascale)计算机、以及量子计算机的电源需求。电源管理设计人员面临的挑战将很快从Exascale计算机转换到量子计算机,而后者的电源管理将更具独特的挑战性。

2016年,第一批量子计算机实现了可以用高级用户界面编程,从而可运行任意量子算法。这些量子计算机的设计架构规模较小,只拥有少量的量子位。

但IBM、谷歌、微软等大型企业以及一些初创企业都有一个终极目标,就是在不久的将来创建更大规模的可商用量子计算机。

量子计算机更像是异构多核计算机的组成部分,在其中经典处理器会与FPGA、GPU以及量子协处理器等多个加速器进行交互。图1显示了量子计算机系统堆叠的层级结构。

Cover-F1-201910.jpg
图1:量子计算机系统堆叠图。(图片来源:Towards a Scalable Quantum Computer)

荷兰代尔夫特理工大学目前正致力于实现硅量子芯片的可编程目标,从而使量子计算机更接近于成功。

如何为这些量子“怪兽”供电?

由于迄今为止还没有成熟的量子计算机出现,我们先从超级计算机的电源需求开始讨论,然后再到新出现的百亿亿级(Exascale)计算机,最后再讨论量子计算机的电源需求。电源管理设计人员面临的挑战将很快从Exascale计算机转换到量子计算机,而后者的电源管理将更具独特的挑战性。但是,对Exascale计算机供电将为对量子计算机供电奠定基础。

超级计算机

超级计算机常用于对复杂的动态系统进行建模和仿真,这些系统成本太高,不太可能进行物理演示或者不切实际。超级计算机可以极大地帮助科学家们探索宇宙发展、生物系统、天气预测甚至再生能源。而目前最新和最快的新一代超级计算机就是Exascale超级计算机。

Exascale计算机

Exascale超级计算机是下一代超算,这种系统能够改进医学、生物技术、先进制造、能源、材料设计和宇宙物理学等多种领域中所涉及的复杂过程的仿真。这种超级计算机可以更快地执行这些应用的计算任务,并提供更高的清晰度。

目前,世界上最耗能的超算是中国广州的天河二号。这台计算机需要18MW功率,而Exascale的天河三号会需要更大功率。作为参考系,在美国一个典型的水电大坝大约可产生36MW电力。

Cray和AMD两家公司正在为美国政府联手打造Frontier超算。它将提供1.5exaflops的原始处理能力,即每秒1.5百亿亿次的计算能力,预计将于2021年投入使用,并届时成为世界上速度最快的Exascale超级计算机(如图2所示)。

Cover-F2-201910.jpg
图2:Frontier Exascale超级计算机。(图片来源:美国能源部/美国橡树岭国家实验室)

这种类型的计算机将显著推进医疗进步,从而改善全球数十亿人的生活。它们可以快速访问和分析病历、基因和环境因素,而为每个人量身定制医疗方案。而且,这类计算机具有令人难以置信的处理速度,因此还可用来开发攻克癌症的精准药物。

Vicor与PEZY Computing携手合作

我知道Vicor在与PEZY Computing合作开发,因此我联系了我的朋友,Vicor公司的产品营销和技术资源副总裁Robert Gendron,和他讨论了如何为超高速、高耗能的处理器提供最佳电源。

当我提到量子计算机时,Gendron想到了IBM于2017年推出的50量子位量子计算机的“金色吊灯”设计(图3)。从那时起直到现在,使用这种计算机都是非常具有挑战性的,而且其量子态仅能保持90μs。尽管IBM的量子计算在不断发展,但这种架构仍处于早期阶段。

如果要处理更复杂的任务,量子计算机会需要数千甚至数百万个量子位。设计人员也正朝着这个目标前进。

Gendron说,我们正在朝Exascale超级计算机靠近,日本公司ExaScaler/PEZY Computing为他们自己的处理器板、英特尔主板和其他公司的产品推出了ZettaScaler-2.0可配置液体浸入式冷却系统。(请参阅我在EDN上的文章:Submerge your power supply, and other options

Cover-F3-201910.jpg
图3:IBM的量子计算机。(图片来源:IBM)

Gendron还说,根据他在业界的所见所闻,美国政府可能会率先开发出真正的Exascale计算机。在尝试打造更高算力的过程中,Vicor看到的最大问题是延迟,它存在于从处理器到内存或到其他处理器的通信中。他表示,由于晶圆良率和光罩尺寸有限,单个处理器的尺寸只能做到30mm×35mm左右,否则就得挨着放两个处理器。Gendron说,这是一个密度问题,要么会受硅片大小限制,要么会产生与内存和其他器件之间的通信延迟。

从我了解的行业信息来看,Exascale处理器以微波速度工作,10GHz处理器也将在几年内上市。也就是说,这样的处理器会需要更大功率和产生更多热量,因此,相较于目前的沉浸式水冷,液氮冷却也相去不远。而且,随着处理器速率的提升,这些PCB上会使用金色的微波带状线或微带线(图4)。

Cover-F4-201910.jpg
图4:第一批量子计算机的两种系统架构比较。(a)通过微波谐振器连接的超导量子位(图片来源:IBM Research);(b)通过激光介导的相互作用连接而成的囚禁离子线性链。插图:星型(a)和全连接型(b)量子位连接图。(图片来源:Towards a Scalable Quantum Computer)

参考文献Towards a Scalable Quantum Computer给出了在两种量子计算机上运行一系列所选算法的结果,包括第一次实现的隐藏移位算法。超导系统的优势在于可实现更快的门速度和固态平台,而离子阱系统具有卓越的量子位和可重配置的连接。这些系统的性能反映了基础硬件的连接水平,说明量子计算机应用和硬件应该要“联合设计”。

美国能源部正在研究算力为1000petaflop的超算,到2023年这种计算机将需要大约20MW的电力。目前加拿大有一台耗电量为1.35MW的ExaScaler计算机。

所以,我问了Gendron,Vicor认为怎样的电源架构才能为这些高耗电处理器提供最佳供电(其实我多少已知道了答案,请参阅我在EDN上发表的文章:《2019年数据中心电源解决方案》)。

Gendron给我推荐了Green 500(能效500强)网页,这个网页每六个月对计算机进行一次排名,并对它们的计算能力进行基准测试。他们测试的flops/W实质上就是能效测试。在2019年6月进行的高性能Linpack(HPL)基准测试中,全球500强超算的浮点运算速度首次全部达到petaflops或者更高。在这次的排名中,采用Nvidia DGX-1 Volta36处理器的DGX SaturnV Volta,以15.113Gflops/W的能效排名第一,然而,该处理器在按超算算力排名的Top 500(算力500强)网页中,排名仅位于第469位。

Vicor与PEZY合作开发的Gyoukou超算系统,在2017年的能效500强中排名第4,在算力500强中排名第5。据Vicor报道称,PEZY超算采用了Vicor的48V分比式电源,这是一种高效率、高密度的配电架构。PEZY的CPU与Vicor的合封电源(PoP)模块化电流倍增器(MCM)共同封装,可在XPU上实现高效的直接48V至1V以下的电流倍增。

PEZY将带有48V输入稳压器的Vicor PoP放在CPU衬底上,通过消除大部分电路板损耗而降低“最后一英寸”的功率损耗,从而为处理器提供更多电力。Vicor PoP可提供的实际峰值电流高达1000A!

例如,若有大约1V@400A的电流通过400µΩ的电路板走线到达处理器,将400平方再乘以400µΩ就得到到达处理器的I2R损耗,再根据64W/400W就可知能效提高了近16%,如图5所示。

Cover-F5-201910.jpg
图5:Vicor PoP封装的位置接近处理器(红色方块)。(图片来源:Vicor)

Gendron表示,未来的挑战是为处理器提供大约0.5V或0.6V的1V以下电源电压。此处的难点在于所设计的供电系统要满足400A负载跳变的要求,同时保持在0.5V(500mV)的某个范围内——0.5V的10%为50mV,因此电压跳变需要小于20mV,或者如果希望保持在合规范围内,则其实际要小于5mV,这很难实现。

量子计算机

量子计算机自成一类,其架构与Exascale超级计算机有很大差别。量子计算机有望大幅加速机器学习。

空中客车公司(Airbus)正在使用计算机来帮助计算飞机最省油的上升和下降路线。而量子计算机可以更快更好地完成这项任务(很可惜波音公司的Max 8没有通过量子计算机来完成无限仿真)。

最新最快的量子IC所具有的量子位阵列需要在极低温度下运行,这个温度比外太空还冷,低至几十毫开氏度(10mK等于-273.14℃)。电源设计人员也许可利用这样的低温来冷却其电源架构。这需要相当大的功率。量子处理器也需要相当大的功率,尽管不需要像将IC冷却到上述极端温度那么大的功率,但高效地为量子处理器供电本身已是一项艰巨的任务。例如,在Exascale计算机上,从电源到处理器沿电路板导电走线的I2R损耗已经很巨大了,而处理器的功率要求要高得多。

为量子计算机供电

当这种新型量子计算机真正出现时,Vicor必须为它们开发下一代PoP电源架构。

新一代电源架构不仅要为量子计算机的处理器部分供电,还需要为这种新型计算机富有挑战的冷却系统供电。要将系统冷却到接近绝对零度的温度,其所需要的功率将远胜于处理器的功率需求。

为冷却系统供电

谷歌的量子人工智能实验室配置了D-Wave最新的量子计算机。D-Wave可能是迄今为止最接近商用的量子计算机(图6)。

Cover-F6-201910.jpg
图6:D-Wave 2000Q系统架构。(图片来源:D-Wave)

标准的数据中心通常都可容纳D-Wave 2000Q量子计算机。

D-Wave的制冷系统具有多层屏蔽,它位于内部的高度真空环境且温度略高于绝对零度。这套系统可将计算机与外部磁场、振动和RF信号隔离开来,而使这一高度敏感的系统不会因为它们而产生误差。

D-Wave系统的功耗低于25kW,而且其中大部分都用于冷却系统和前端服务器的运行。

D-Wave量子处理单元(QPU)由金属铌的微小环形网格构成,每个网格都是一个量子位。在低于9.2K的温度下,铌变成超导体并展现量子力学效应。在量子态下,电流同时向两个方向流动,这意味着量子位处于叠加态,即同时处于0和1两个状态。在问题求解过程结束时,这种叠加态塌缩为两个经典状态之一:0或1。

Cover-F7-201910.jpg
图7:量子处理单元。(图片来源:D-Wave)

不久的将来会有更强大的量子计算机出现,它将需要更大的功率,尤其是用于处理器。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Power supply management in quantum computers。)

本文为《电子技术设计》2019年10月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Steve Taranovich
EDN资深技术编辑。Steve Taranovich是EE Time姊妹网站Planet Analog的主编,也是EDN的高级技术编辑。 Steve在电子行业拥有40年的从业经验。 他在纽约布鲁克林理工大学获得电子工程硕士学位,在纽约布朗克斯纽约大学获得BEEE学位。 他还是IEEE长岛教育活动委员会主席。 他在Burr-Brown和德州仪器公司工作多年,在模拟设计方面有丰富的经验,并有着嵌入式处理的教育背景。 Steve做了16年的电路设计工程师,随后他成为Burr-Brown Corp的首批现场应用工程师之一,并成为他们首批前往欧洲、印度和中国的全球客户经理之一。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 谷歌声称已达到“量子霸权” ,但论文为何被“秒删”? 量子计算机用 3 分 20 秒完成的一项计算,全球最强大的超算 Summit 要花 1 万年。这个成果,来自 Google 最新的量子计算研究,发表在 NASA 官网上。论文宣布,“量子霸权”实现了。但NASA 没过多久便下架了这篇论文,但正因如此,人类反而对 Google 新的成果更加好奇了。
  • 揭开量子计算的神秘面纱 量子计算机在处理具有大量输入的数字或数据时表现极为出众。它们专门设计用来解决超级计算机可能好几天也无法解决的复杂问题。量子计算机可以通过电子或质子的形式来仿真宇宙中的亚原子粒子。量子计算典范正处于起步阶段,它注定将对我们掌握化学、生物学和物理学产生重大影响。
  • 光学技术进展为量子计算铺路 为了满足越来越高的计算性能要求,业界不断挑战半导体工艺技术极限。研究人员开发出量子光源和光子二极管,可望为量子计算开启大门…
  • 日本量子退火机号称超现有量子计算机性能,真有这么牛? 日前,据日媒报道,日本国立情报学研究所等机构证实,其开发的、采用新计算方式的高速计算机,拥有超过现有量子计算机的性能。这台计算机名为“Coherent Ising Machine”,其设计目的是为快速解决组合优化问题。这台新计算机的性能真能超过现有量子计算机吗?
  • 量子计算竞争激烈,但其性能合适才能超越传统计算机? 传统计算机性能的提升面临挑战,光子计算、量子计算、生物计算等新的技术都引发了业界关注。量子计算被认为能够解决传统计算不能解决的问题,但目前量子计算面临诸多挑战,性能还未超越传统计算机。从实践者的角度看,量子计算的部署至少还需要几年时间。
  • 科学家发明能够“预测多个未来”的量子计算机 据国外媒体报道,科学家打造了一台如同电影《回到未来》风格的装置,能够预测另一种现实和可能的未来。这台机器其实是一台量子计算机,能够同时生成多个“未来”,就好像用不同的水晶球占卜一样。不过,要想预测未来的彩票中奖得主,这台机器目前还做不到。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告