广告

如何将光强度转换为一个电学量

2019-09-16 Thomas Brand,ADI公司 阅读:
如何将光强度转换为一个电学量
在设计房间照明或准备拍摄照片时,光强度的确定可能至关重要。在物联网(IoT)时代,确定光强度对所谓的智能农业来说也有着重要作用。在这种应用中,一项关键任务是对重要的植物参数进行监测和控制,以便促进植物最好地生长并加速光合作用。

问:如何测量不同光源的光强度?Vkrednc

答:拿一只红、绿、蓝光LED。Vkrednc

在设计房间照明或准备拍摄照片时,光强度的确定可能至关重要。在物联网(IoT)时代,确定光强度对所谓的智能农业来说也有着重要作用。在这种应用中,一项关键任务是对重要的植物参数进行监测和控制,以便促进植物最好地生长并加速光合作用。因此,光是最重要的一个因素。大多数植物通常会吸收可见光谱中的红、橙、蓝、紫等色波长的光。光谱中绿色和黄色波长的光一般会被反射,对植物生长的贡献不大。在不同生长阶段对部分光谱和光照射强度进行控制,可以使生长最大化,并最终提高产量。Vkrednc

图1所示电路设计可用于测量可见光谱范围内对植物光合作用起作用的光强度。这里使用了三种不同颜色的光电二极管(绿、红、蓝),可响应不同的波长。现在就可以使用光电二极管所测量到的光强信号,根据具体植物的要求控制光源。Vkrednc

图示电路由三个精密电流电压转换器(跨导放大器)组成,每种颜色(绿、红、蓝)对应一个。电流电压转换器的输出作为Σ-Δ模数转换器(ADC)的差分输入,从而将测量值以数字数据的形式提供给微控制器做后续处理。Vkrednc

光强转换为电流

根据光强不同,光电二极管中会有或多或少的电流流过。电流和光强之间的关系近似呈线性,如图2所示。图中显示了输出电流随红光(CLS15-22C/L213R/TR8)、绿光(CLS15-22C/L213G/TR8)和蓝光(CLS15-22C/L213B/TR8)光电二极管光强变化的特性曲线。Vkrednc

004ednc20190916Vkrednc

图1:用于测量光强度的电路设计。Vkrednc

005ednc20190916Vkrednc

图2:红、绿、蓝光光电二极管的电流光强特性曲线Vkrednc

然而,红、绿、蓝光二极管的相对灵敏度不同,因此每级的增益必须通过反馈电阻RFB单独确定。为此,每个二极管的短路电流(ISC)必须从数据手册获取,然后就可以通过它确定工作点处的灵敏度S(pA/lux)。再然后,就可以通过公式1计算RFBVkrednc

002ednc20190916Vkrednc
Vkrednc

其中,VFS,P-P表示期望的全输出电压范围(满量程、峰峰值);INTMAX表示最大光强度,对于直射阳光,其值为120,000lux。Vkrednc

电流电压转换

由于光电二极管的输出电流在皮安范围,因此高质量的电流电压转换要求运算放大器的偏置电流尽可能小,这样就可以产生相当大的误差。失调电压也应很小。ADI公司的AD8500是此类应用的理想选择,其偏置电流典型值为1pA,失调电压最大值为1mV。Vkrednc

模数转换

为了进一步处理测量值,在将光电二极管的电流转换成电压后,还必须以数字值的方式提供给微控制器。为此可以使用带多个差分输入的ADC,例如16位ADC AD7798。因此,被测电压的输出码如下:Vkrednc

003ednc20190916Vkrednc
Vkrednc

其中,Vkrednc

AIN=输入电压,Vkrednc

N=位数,Vkrednc

GAIN=内部放大器的增益系数,Vkrednc

VREF=外部基准电压。Vkrednc

为了进一步降低噪声,在ADC的每个差分输入端均使用了共模和差分滤波器。Vkrednc

上述全部元器件都非常省电,这使得该电路非常适合于以电池供电的便携式现场应用。Vkrednc

结论

元器件的偏置电流和失调电压等误差源必须予以考虑。此外,转换器级的放大系数若不理想,则会影响信号质量,从而影响电路结果。采用图1中的电路,可以以较简单的方式将光强转换为电学值,以供进一步数据处理。Vkrednc

(作者简介:Thomas Brand,于2015年在德国慕尼黑加入ADI公司,当时他还在攻读硕士。毕业后,他参加了ADI公司的培训生项目。2017年,他成为一名现场应用工程师。Thomas为中欧的大型工业客户提供支持,并专注于工业以太网领域。他毕业于德国莫斯巴赫的联合教育大学电气工程专业,之后在德国康斯坦茨应用科学大学获得国际销售硕士学位。)Vkrednc

本文为《电子技术设计》2019年9月刊杂志文章。Vkrednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 华为在5G行业终端生态峰会上发布白皮书,智能机器人加速 继松山湖华为2020开发者大会后,近日,“华为2020年5G行业终端生态峰会”在北京国家会议中心举行,会议上发布了《5G行业终端生态白皮书》。猎户星空作为华为5G行业终端生态合作伙伴,以成员身份见证了华为5G行业终端生态联盟的成立。
  • 安卓旗舰标配的屏下指纹,或将登上苹果iPhone 13 屏下指纹在安卓旗舰手机中早就普及,小米、OV、三星,以及华为等都配置了屏下指纹。可是,在屏下指纹领域,苹果一直没有动静,不过,最近有爆料称下一版本iPhone 13或将同时配备屏下指纹和Face ID传感器。
  • 苹果iPhone 12发布,A14芯片性能再次跃升,高通、三星谁能 苹果iPhone 12于今日正式发布了,芯片方面的亮点在于A14和5G,5G采用高通的基带集成在A14中。A14芯片性能的提升主要在于晶体管数量增多,GPU,NPU以及DSP信号处理技术。在高端手机芯片领域,除了苹果,仅有高通,三星了,还有被封杀的华为麒麟,那么谁能与A14一较高下?
  • 用模拟电荷泵产生高频高压脉冲 最近有一个项目评估了5G动态负载调制(DLM)射频功率放大器的可行性。DLM放大器通常会在其输出网络使用高压变容二极管,从而需要用高速大线性电压脉冲来驱动。
  • 利用混合信号示波器查找和诊断电源完整性问题导致的抖 本文使用MSO6B来演示抖动和电源轨道测量,因为其引起的噪声低,特别适合这些测量。该示波器配有数字电源管理(DPM)选项和高级抖动分析(DJA)。虽然我们以6系列B MSO为例,但5系列MSO也提供了相同的测量功能。
  • 超级电容器:电信和远程信息处理应用的电源管理策略 未来的数字世界有望为人们带来更舒适和更安全的生活。不过,自动驾驶、交通标志的自动检测以及许多其他功能都要求不间断的数据连接,因此需要安全稳定的持续电源供应。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了