广告

十九个5V转3.3V的小技巧

2019-10-22 阅读:
十九个5V转3.3V的小技巧
本文对稳压电路5V转3.3V的经典方案进行了总结,并进行了详尽的阐述。

技巧一:使用LDO稳压器,从5V电源向3.3V系统供电

标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:tCLednc

1. 导通晶体管tCLednc

2. 带隙参考源tCLednc

3. 运算放大器tCLednc

4. 反馈电阻分压器tCLednc

在选择 LDO 时,重要的是要知道如何区分各种LDO。器件的静态电流、封装大小和型号是重要的器件参数。根据具体应用来确定各种参数,将会得到最优的设计。tCLednc

003ednc220191022tCLednc

LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。 IGND 是 LDO 用来进行稳压的电流。当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。然而,轻载时,必须将 IQ 计入效率计算中。具有较低 IQ 的 LDO 其轻载效率较高。轻载效率的提高对于 LDO 性能有负面影响。静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。tCLednc

技巧二:采用齐纳二极管的低成本供电系统

这里详细说明了一个采用齐纳二极管的低成本稳压器方案。tCLednc

004ednc220191022tCLednc

可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。另外,它的能效较低,因为 R1 和 D1 始终有功耗。R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。tCLednc

R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。同时,在最小负载时——通常是 PICmicro MCU 复位时——VDD 不超过齐纳二极管的额定功率,也不超过 PICmicro MCU的最大 VDD。tCLednc

技巧三:采用3个整流二极管的更低成本供电系统

005ednc220191022tCLednc

图 3-1 详细说明了一个采用 3 个整流二极管的更低成本稳压器方案。tCLednc

我们也可以把几个常规开关二极管串联起来,用其正向压降来降低进入的 PICmicro MCU 的电压。这甚至比齐纳二极管稳压器的成本还要低。这种设计的电流消耗通常要比使用齐纳二极管的电路低。tCLednc

所需二极管的数量根据所选用二极管的正向电压而变化。二极管 D1-D3 的电压降是流经这些二极管的电流的函数。连接 R1 是为了避免在负载最小时——通常是 PICmicro MCU 处于复位或休眠状态时——PICmicro MCU VDD 引脚上的电压超过PICmicro MCU 的最大 VDD 值。根据其他连接至VDD 的电路,可以提高R1 的阻值,甚至也可能完全不需要 R1。二极管 D1-D3 的选择依据是:在最大负载时——通常是 PICmicro MCU 运行且驱动其输出为高电平时——D1-D3 上的电压降要足够低从而能够满足 PICmicro MCU 的最低 VDD 要求。tCLednc

技巧四:使用开关稳压器,从5V电源向3.3V系统供电

如图 4-1 所示,降压开关稳压器是一种基于电感的转换器,用来把输入电压源降低至幅值较低的输出电压。输出稳压是通过控制 MOSFET Q1 的导通(ON)时间来实现的。由于 MOSFET 要么处于低阻状态,要么处于高阻状态(分别为 ON 和OFF),因此高输入源电压能够高效率地转换成较低的输出电压。tCLednc

当 Q1 在这两种状态期间时,通过平衡电感的电压- 时间,可以建立输入和输出电压之间的关系。tCLednc

006ednc220191022.jpgtCLednc

对于 MOSFET Q1,有下式:tCLednc

007ednc220191022.jpgtCLednc

在选择电感的值时,使电感的最大峰 - 峰纹波电流等于最大负载电流的百分之十的电感值,是个很好的初始选择。tCLednc

008ednc220191022.jpgtCLednc

在选择输出电容值时,好的初值是:使 LC 滤波器特性阻抗等于负载电阻。这样在满载工作期间如果突然卸掉负载,电压过冲能处于可接受范围之内。tCLednc

009ednc220191022.jpgtCLednc

在选择二极管 D1 时,应选择额定电流足够大的元件,使之能够承受脉冲周期 (IL)放电期间的电感电流。tCLednc

010ednc220191022.jpgtCLednc

数字连接tCLednc

在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。tCLednc

011ednc220191022.jpgtCLednc

技巧五:3.3V →5V直接连接

将 3.3V 输出连接到 5V 输入最简单、最理想的方法是直接连接。直接连接需要满足以下 2 点要求:tCLednc

• 3.3V输出的 VOH 大于 5V 输入的 VIHtCLednc

• 3.3V输出的 VOL 小于 5V 输入的 VILtCLednc

能够使用这种方法的例子之一是将 3.3V LVCMOS输出连接到 5V TTL 输入。从表 4-1 中所给出的值可以清楚地看到上述要求均满足。tCLednc

3.3V LVCMOS 的 VOH (3.0V)大于5V TTL 的VIH (2.0V)tCLednc

tCLednc

3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。tCLednc

如果这两个要求得不到满足,连接两个部分时就需要额外的电路。可能的解决方案请参阅技巧 6、7、 8 和 13。tCLednc

技巧六:3.3V→5V使用MOSFET转换器

如果 5V 输入的 VIH 比 3.3V CMOS 器件的 VOH 要高,则驱动任何这样的 5V 输入就需要额外的电路。图 6-1 所示为低成本的双元件解决方案。tCLednc

在选择 R1 的阻值时,需要考虑两个参数,即:输入的开关速度和 R1 上的电流消耗。当把输入从 0切换到 1 时,需要计入因 R1 形成的 RC 时间常数而导致的输入上升时间、 5V 输入的输入容抗以及电路板上任何的杂散电容。输入开关速度可通过下式计算:tCLednc

012ednc220191022.jpgtCLednc

由于输入容抗和电路板上的杂散电容是固定的,提高输入开关速度的惟一途径是降低 R1 的阻值。而降低 R1 阻值以获取更短的开关时间,却是以增大5V 输入为低电平时的电流消耗为代价的。通常,切换到 0 要比切换到 1 的速度快得多,因为 N 沟道 MOSFET 的导通电阻要远小于 R1。另外,在选择 N 沟道 FET 时,所选 FET 的VGS 应低于3.3V 输出的 VOH。tCLednc

013ednc220191022.jpgtCLednc

技巧七:3.3V→5V使用二极管补偿

表 7-1 列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。tCLednc

014ednc220191022.jpgtCLednc

从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。tCLednc

015ednc220191022.jpgtCLednc

输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高得多,因为拉高输出的机制是负载电阻,而不是输出三极管。tCLednc

如果我们设计一个二极管补偿电路 (见图 7-1),二极管 D1 的正向电压 (典型值 0.7V)将会使输出低电压上升,在 5V CMOS 输入得到 1.1V 至1.2V 的低电压。它安全地处于 5V CMOS 输入的低输入电压阈值之下。输出高电压由上拉电阻和连至3.3V 电源的二极管 D2 确定。这使得输出高电压大约比 3.3V 电源高 0.7V,也就是 4.0 到 4.1V,很安全地在 5V CMOS 输入阈值 (3.5V)之上。tCLednc

注: 为了使电路工作正常,上拉电阻必须显著小于 5V CMOS 输入的输入电阻,从而避免由于输入端电阻分压器效应而导致的输出电压下降。上拉电阻还必须足够大,从而确保加载在 3.3V 输出上的电流在器件规范之内。tCLednc

技巧八:3.3V→5V使用电压比较器

比较器的基本工作如下:tCLednc

• 反相 (-)输入电压大于同相 (+)输入电压时,比较器输出切换到 Vss。tCLednc

• 同相 (+)输入端电压大于反相 (-)输入电压时,比较器输出为高电平。tCLednc

为了保持 3.3V 输出的极性, 3.3V 输出必须连接到比较器的同相输入端。比较器的反相输入连接到由 R1 和 R2 确定的参考电压处,如图 8-1 所示。tCLednc

016ednc220191022.jpgtCLednc

计算 R1 和 R2tCLednc

R1 和 R2 之比取决于输入信号的逻辑电平。对于3.3V 输出,反相电压应该置于VOL 与VOH之间的中点电压。对于 LVCMOS 输出,中点电压为:tCLednc

017ednc220191022.jpgtCLednc

如果 R1 和 R2 的逻辑电平关系如下,tCLednc

018ednc220191022.jpgtCLednc

若 R2 取值为 1K,则 R1 为 1.8K。tCLednc

经过适当连接后的运算放大器可以用作比较器,以将 3.3V 输入信号转换为 5V 输出信号。这是利用了比较器的特性,即:根据 “反相”输入与 “同相”输入之间的压差幅值,比较器迫使输出为高(VDD)或低 (Vss)电平。tCLednc

注: 要使运算放大器在 5V 供电下正常工作,输出必须具有轨到轨驱动能力。tCLednc

019ednc220191022.jpgtCLednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 小小被动元器件也有大学问 在“高性能被动元器件发展论坛”上,七家厂商分享了有关高性能被动元器件的发展趋势及技术挑战等热门主题。会议最后还召开“国产高性能被动器件的机会和挑战”的圆桌论坛,共同探讨了被动元器件之高性能与挑战、国产化进程、缺货涨价和应对方法,以及市场应用四个重要议题。
  • DC/DC电路噪声滤波器仿真与验证 村田提供用于噪声滤波器设计支持的仿真工具,该工具可以根据从我们组件中选择的项目来计算和绘制滤波器电路的插入损耗特性,并绘制图形。为了证明仿真工具的有效性,最后比较了使用PCB的实际噪声抑制结果和仿真结果。
  • Arm在数据中心的价值:黄氏定律背后,英伟达打的什么算盘? 英伟达DPU这种类型的硬件,几乎可以代表数据中心的某一个发展方向。这个议题甚至恰好能够解答,英伟达为何要收购Arm,以及AMD为何要收购赛灵思。在近期英伟达GTC China首日主题演讲之后的圆桌论坛上,英伟达全球业务运营执行副总裁Jay Puri谈到了有关英伟达收购Arm的问题……
  • 两种方案对比为继电器加装LED的设计权衡 有位朋友想在双刀单掷机电式继电器上增加一个LED,用来指示继电器线圈的通电状态。我先后想到两种解决方案:直接将LED与继电器线圈串联;或者将它与一个限流电阻串联,然后并联到线圈的两端。前一种方案更加简单,但简单的就是最好吗?
  • 猎户星空当选WISE2020中国新经济之王“最具影响力企业 在服务机器人领域,猎豹旗下的猎户星空凭借自研的语音OS和 Robot OS、导航、云端大脑等过硬的研发实力,2019年开始发力,2020在新冠疫情中转危为机,在商场、医疗、政务等20多个领域进行了应用的落地,也因此成功入选“2020年中国新经济之王最具影响力企业”榜单。
  • 2020 ICCAD 魏少军教授演讲实录 在2020 ICCAD(中国集成电路设计业2020年会)上,清华大学魏少军教授发表了《抓住机会实现跨越》报告,根据2020年的总体发展情况,对十三五中国芯片设计业的发展进行了小结,同时高屋建瓴,提出了几点思考,最后进行了总结,给中国集成电路设计行业的发展提出了指导。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了