广告

“软硬兼施”才能让MEMS更聪明?

2019-11-25 10:52:54 Anne-Françoise Pelé, EE Times欧洲特派记者 阅读:
硬件,尤其是MEMS传感器,仍将是终端装置中不可或缺的部份,但未来,软件在为用户带来价值方面也扮演同样重要的角色…

硬件,尤其是MEMS传感器,仍将会是终端装置中不可或缺的部份,但展望未来,软件在为用户带来价值方面也扮演同样重要的角色。博世(Bosch Sensortec)认为,传感器软件将会变得越来越智能,从而将MEMS传感器转变为更准确且个人化的系统,协助用户适应任何情况。tmGednc

Bosch Sensortec技术长Markus Ulm说:“软件为传统传感器组件增加了新功能。 我深信这将会对我们的产业带来重大影响,”促进MEMS传感器导入当前和新的应用中。tmGednc

MEMS标准化

“一种产品,一种制程”(One Product, One Process)是MEMS产业中众所周知的不二法则。MEMS组件必须经过高度客制才可能满足功耗、延迟、稳定度和内存方面的特定要求。例如,虚拟现实(VR)头戴式显示器需要最低延迟时间,扫地机器人则要求在各种不同温度下具有高稳定度,而穿戴式装置则需要以超低功率实现自主学习以及定向追踪。Ulm说:“但要开发一种适合所有产品的解决方案极其困难,而且还必须要有足够的市场覆盖才能真正使其具有商业可行性。”tmGednc

再者,在迈向制程标准化方面几乎没什么进展,这也象征着这一产业与传统半导体产业制程的显著差异。Yole Développement技术市场分析师Damianos Dimitrios认为,“在MEMS标准化方面一直没有任何改善和进步。过去二、三十年来一直是这样,业界都在谈论标准化,但却一直未能实现。这就是为什么MEMS代工厂和CMOS代工厂的商业模式发展不同的原因。”tmGednc

Ulm声称,软件正是超越这种典范并带来商业意义的主要推动力之一。tmGednc

越来越聪明

从读取传感器数据到评估数据,直到最终展开学习并根据资料做出本地决策,软件已经发展很长一段时间了。tmGednc

Ulm说:“软件和硬件的结合,带来了创造传感器以及新的感测方法之路。”tmGednc

如果硬件中包括不止一种类型的传感器,那么软件就够将各种原始测量结果汇整在一起,并将结果转化为更有价值的信息。“因此,相较于传感器组件,一个完整的系统能够产生有关感测的更高层级信息。”他并以使用Bosch Sensortec BME680气体传感器为例说,“如果仅使用传感器原始数据,你可能无法分类不同的气体。但透过软件启用,气体传感器中所采用的技术还可用于进行温度光谱分析。”tmGednc

传感器融合同样透过软件智能化地组合并评估来自多个传感器的数据,以改善应用或系统效能。但是,实际上,要让多个传感器协同运作并收集有用的数据并不是那么简单或直接。tmGednc

Ulm说:“为了简化传感器融合过程,您必须提高运算能力,或者建立一些机器学习算法,以处理所有的数据、进行分类,并且了解哪些数据来自哪个传感器以及数据在传达什么讯息。”tmGednc

处理能力也是一大挑战。Damianos说:“您需要更多的能力来处理资料,但最终,您还需要降低功耗,才能让装置可以持续更长时间使用,特别是消费类应用。”tmGednc

001ednc20191125.jpgtmGednc

(来源:Bosch Sensortec)tmGednc

Ulm指出:“传感器融合尚未达到极限,还需要进一步的研究和开发。”他说Bosch的方法包括利用人工智能(AI)和软件合成,以使消费电子装置更智能。“软件合成是指根据领域知识和特定产品版本的特定限制自动产生程码的方式。”tmGednc

“传感器融合技术实现了一定程度的自动化,这为更复杂的传感器融合创造了新的机会——由于涉及大数据(big data)和大量潜在的数据源,是以往使用传统方法无法实现的。”tmGednc

软件不仅为传感器增加价值,也进一步提升了整体系统。它也变得越来越聪明,可以直接在MEMS传感器内部实现AI。Ulm说:“我们一直听到很多有关AI的讨论,但我想鼓吹边缘AI (edge AI)作为产业和用例验收的解决方案。”直接在MEMS装置的本地拥有AI,将有助于发展新的应用,并为用户带来更多好处。tmGednc

在边缘执行AI算法确实为用户带来了诸多好处。第一是个人化,在本地执行计算,并根据用户的个人行为实现优化。其次是用户的数据隐私。Ulm解释说,由于在边缘处理数据而无需经由云端,更能让资料保有稳私性。第三个好处是实时反馈。“将内容上云处理后再传回装置,将会经历延迟,而且有许多应用其实并没有必要上云。”在边缘执行可避免数据来回传输并减少延迟。第四个好处则是由于在本地进行处理,有助于延长电池寿命。tmGednc

002ednc20191125.jpgtmGednc

Bosch Sensortec技术长Markus UlmtmGednc

然而,Edge AI仍然受制于几项关键的成功因素。Ulm说:“不仅要理解和控制数据,算法也不可忽略,这些都是至关重要的,尤其是对于Edge AI而言。”他并强调,Edge AI要能成功取决于三件事。首先从在边缘受限条件下执行于装置上的算法开始。“重点在于了解这些算法并开发能够在此条件下执行的新算法。”其次是数据,这些实时产生的数据必须实时处理。第三是情境架构(context),这意味着数据的解读必须对特定用例有意义,而且在特定情况下也具有价值。Ulm解释说,“例如,这种价值可以是根据情况如何以不同方式处理问题的实时反馈。”tmGednc

目前,Edge AI仍处于其发展初期。Ulm表示,由于机器学习社群一直专注于以基于云端的解决方案来解决大数据和大规模的问题,因此还有各种挑战尚待解决。tmGednc

Damianos指出,主要的挑战是功耗和摩尔定律(Moore’s Law)的限制。“我们都知道摩尔定律正逐渐式微。我们不确定它是否终结,但至少知道它正放缓中,因而对于可能在处理器单元中增加的晶体管数量带来了限制。”另一个确定的挑战是资料隐私法规。“在欧洲,我们已经有《一般数据保护规范》(GDPR)了,但还需要了解其他地区的情况。”tmGednc

而当被问及MEMS传感器公司如何在edge AI方面有所作为,以及证实较云端供货商更具优势时,Ulm列举了许多用例,包括在极其接近传感器的边缘,可能为客户带来的价值等等。“MEMS传感器公司在此可以利用其优势来突破边缘的限制,从而实现本地机器学习解决方案。而且,最重要的是,我们了解传感器的功能及其如何运作。”tmGednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes;参考链接:Software Propels MEMS to Smarter Systems,编译:Susan Hong)tmGednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 利用IIoT进行智能水资源管理 我们需要有效的水资源管理,通过减少浪费和更有效地回收废水来节约用水。通过防洪减灾来保护脆弱的城市和基础设施也是如此。那么我们可以做些什么来解决这些问题呢?工业物联网(IIoT)可能会提供一些潜在的解决方案。
  • 智能楼宇不只是能源管理 新冠疫情的到来,引发了我们在如何在办公室、工厂和商店等室内环境更智能、安全地进行社交和协作方面更多的思考与讨论。
  • 具有扩展范围的电容数字转换器 电容传感器广泛用于各种工业应用,例如液位监测、压力测量、位置检测、流量计、湿度检测等。ΣΔ (Sigma-Delta)电容数字转换器(CDC)用方波激励未知电容,并将产生的电荷转换成单位数字输出流。然后,由数字滤波器处理位流,输出精确的低噪声电容测量值。
  • 基于 MXene 和Borophene(硼墨烯)的第5代智能传感器如何 随着基于 MXene 和 Borophene (硼墨烯)的高级二维材料 (A2M) 的推出,使用 A2M 构建的传感器在各个方面都优于传统传感器。 使用基于 2D MXenes 和 Borophene 的第 5 代智能传感器彻底改变物联网传感器市场。
  • 传感器技术在构建实时监控系统中的作用 无线传感器技术正在成为一个有前途的概念,这对每个虚拟市场都有重大影响。随着需要更快计算处理的数据密集型应用的数量增加,对实时监控系统的需求呈指数增长。尽管传感器节点的需求随着应用的规模而扩大,但终端设备却已通过对智能传感器的高效建模不断改进数据处理。
  • 利用热能和振动能为IoT设备供电 热量作为来自发动机、机器和其他来源的浪费副产物通常很容易获得。热梯度采集是捕获环境热量并将其投入使用的过程。在利用环境现象获取能量的众多方法中,利用压电器件将振动转化为电能的方法似乎特别有效,根据尺寸和结构,它能够产生数百微瓦的电能。
  • 压电发声器驱动器如何在更宽广的电池电压范围内提高声 本文讨论的内容为:为了提供必要的驱动电压,对电路有哪些要求;以及相较于电荷泵为基础的方式,以电感器为基础的升压转换器,如何在更广的电池电压范围内,提供更高的输出电压(因而产生更响亮的声音)。
  • 用于状态监控的高保真振动采集平台 本章内容阐述了MEMS技术的最新进展如何将加速度传感器推到前沿,并且将可以确保将最高质量的振动数据传输至机器学习环境CbM开发平台支持的机器学习流程进行了简单的概述。
  • 德国新型压力传感器使用SiC可工作在600°C高温 柏林 Fraunhofer IZM的研究人员开发了一种压力传感器,该传感器使用碳化硅 (SiC) 可在高达 600°C 的温度下工作。该传感器最初旨在微调喷气涡轮机的燃烧过程,以减少飞机和
  • 意法半导体先进的MEMS传感器助您开启Onlife时代 ST第三代技术提高准确度和能效,附加功能包括边缘机器学习和静电感测
  • “中国IC设计成就奖”提名产品简介:艾为触觉反馈驱动AW AW86224是一款具有F0检测与追踪,内置SRAM波形空间,低功耗、小尺寸的常压线性马达驱动IC
  • 用TinyML开始设计——开发评估套件 本文中展示的开发套件和评估板得到一些流行的机器学习库和用于 TinyML 工作流程资源的支持,包括用于微控制器的 Google TensorFlow Lite 和 Edge Impulse,因而它们能够成为您第一个项目的理想起点。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了