向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

低耗电技术降低整体用电量,真的吗?

时间:2019-11-26 作者:Bill Schweber 阅读:
尽管技术演进使得各种从小型到大型的电子设备更省电,但这是否能抵销整体电子设备数量的增加?

美国《华尔街日报》(The Wall Street Journal)最近有一篇文章引起我的注意,题为“感谢LED灯泡──美国人再也不是吃电怪兽了!”(Americans Are No Longer Gluttons for Electricity—Thank the LED Bulb) ;文中指出,根据美国能源部(the US Department of Energy)的统计数字,自2010年以来,美国民众平均每户用电量逐年下滑,如下图。Gabednc

001ednc20191126Gabednc

但是等一下…该文还提到了一个无法忽视的信息:“去年,因为炎夏与寒冬,每户平均用电量飙升到10.97 megawatt-hours (mWh),但整体趋势仍然是下降。”(与说法不符的数据点几乎都是因为天气!)Gabednc

所以从2010年到2017年这一段长时间呈现用电量下滑趋势,但2018年出现反常?又或许是情况其实是反过来的,分析师只看到他们想看到的数字?显然很清楚的事实是:从白炽灯泡到LED灯的转换,对家户用电量产生了一定的影响。不过照明仅占据家户用电量的10~20%,如果因为改用LED而节省其中80%的耗电,其实算来只有个位数百分点的整体能源节省幅度--这当然还是有意义,只是并非全貌。Gabednc

当然,还存在一些此消彼涨的消费趋势,会使得用电量提高的同时也降低。上述文章指出,在1950年代,空调才刚刚出现在美国家庭中,而当时只有9%的美国家庭拥有电视机;如今有87%的美国家庭拥有空调系统,而几乎家家都有电视机,其中还有39%拥有三台以上。另一方面,这些家电越来越省电--1950年代的14吋映像管电视机(耗电量约500W)与现代尺寸更大的平面电视(耗电量与200W),在耗电量上就有很大差距。Gabednc

不过我们确实拥有更多数量的这些家电,尽管单看它们每一台提供的功能,其耗电表现是相当低的,你得把它们全部加总。Gabednc

我还想知道的是那些数字的准确度(accuracy)--不是精确度(precision)--有多高。首先,身为一个工程师,我总是会发现“平均值”是一种方便、但是运用风险很高的数字,因为它的基本特性就是抹除了许多重要的顶层颗粒度(granularity);此外虽然我假设数据分析师们固定会使用许多校正因子(就像许多其他大规模统计数字那样,例如国内生产总值-GDP),这些校正因子通常是基于历史趋势,很可能不再有效。Gabednc

而统计数字中的能源量是否涵盖了不在电网中的能源量?也就是部分家庭的自有发电量(利用太阳能发电或是风力发电);这部分比例非常小,但或许是重要的数据。我们真的知道那些自己发电又将多余电量回售给电网的家户实际上用了多少电吗?Gabednc

至少可以用两种方法来检视上述文章提供数据的可靠度。或许最后是因为隐藏了许多较小的误差,结果还是接近正确(但我们怎么会知道正不正确),又或者他们主要偏向某一种误差,因此产生的结果也是偏斜的;而且无论你能不能接受,这些数字用来预测以及政策制定,无论哪一方都有所谓的“专家学者”--有人认为“这是好消息、我们取得了进步;”也会有人说“这不够好,我们还需要做得更好。”Gabednc

更让我忧心的是,我们会倾向于用这些数字推算未来5年甚至10年的情况,但我们都知道这种预测是容易出错的,特别是当起始基数接近那些小误差,就可能导致那种预测数字出现更大的误差。Gabednc

我还烦恼,所谓的“专家”或是不用功的媒体会做出“根据这种速率,在未来几年将会发生这样那样的事情…”之类的分析,也就是认为某个趋势速度会在整个预测期间内持续存在,没考虑到现实世界的非线性(nonlinearities)、饱和度(saturations)与极限(limits)。Gabednc

就算读者们并非美国当地居民,你认为像上面的统计趋势预测是可信的吗?尽管技术演进使得各种从小型到大型的电子设备更省电,但这是否能抵销整体电子设备数量的增加?还有当电动车更普及,是否也会对家户用电量带来影响?欢迎与我们分享你的高见!Gabednc

(原文发表于ASPENCORE旗下EDN美国版,参考链接: US power usage is declining, or is it?,编译:Judith Cheng)Gabednc

 Gabednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 升压放大器让设备兼具小身材和大音量 消费者现在都用非常小巧的设备来听音乐,但是锂电池和低压电源通常不能实现大音量的音频效果。升压放大器因其可以增加响度,同时能实现极小尺寸的封装和超低的功耗日渐流行。
  • 独石电容、瓷片电容、陶瓷电容什么关系? 独石电容和瓷片电容都属于陶瓷电容,整体构造上看独石电容和瓷片电容的区别是:独石电容是多层陶瓷电容的别称,独石电容是由多层介质和多对电极构成的,而瓷片电容一般是由一层介质和一对电极构成的,瓷片电容分为高频瓷介和低频瓷介两种。
  • 提高极低压差稳压器输出电流,实现均匀散热的并联设计 本文说明如何将3 A LT3033极低压差稳压器(VLDO)并联产生3 A以上电流并改善散热情况。利用LT3033的内置输出电流监测功能可以简化并联电路的设计,实现均流。
  • 小米引爆的GaN快充离成熟还差一步 EDN上的文章《一文看懂小米捧红的氮化镓快充到底是什么?》对GaN技术进行了详细科普。本文就来讨论下这项技术的现状以及未来又会有何发展。
  • 2020:消费电子产品未来几年趋势预测 一年伊始,正是对未来做些预测的时候。作者对未来几年消费电子产品的发展趋势提出了自己的观点。他认为,深度学习、自动驾驶汽车、5G设备、处理器、电池等将会快速发展,其中深度学习会影响未来的许多应用,包括自动驾驶汽车、网络安全,甚至各国的选举。
  • 小米GaN氮化镓充电器实用吗?我们对比了五款65W PD充电 2020年2月小米一口气更新了多款65W PD充电器,包括使用了氮化镓的小米GaN充电器、多口小米2A1C充电器、魔改A口PD充电器等等,应该是单月内发布最多同功率充电器的品牌商了。他们之间功率器件不同、协议不同、设计不同、价格也不同,小编整理了小米最热门的五款65W充电器,细说他们之间的不同之处。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告