广告

电源“保护”也可以很简单

2020-01-31 15:27:58 Bill Schweber 阅读:
通常,关于电源「保护」的挑战都是一些明摆在我们面前的问题,但难以预期的原因在于涉及工作量的多少以及如何让产品上市的阻碍…

「电源保护」是系统设计中固有的重要议题,特别是采用基于「脱机式」交流电源(AC)的一次侧,能够以致命电压提供大量功率。例如,AC/直流电源(DC)的核心功能及其输出通常都会有短路保护、欠压锁定(UVLO)、过压保护(OVP)、热保护,以及可能的反向连接保护与热过载保护等措施。实施这些保护措施需要各种不同的电路技巧和离散组件,如压敏电阻、保险丝、断路器和温度传感器等。97Fednc

然而,电源之所以可能存在问题也来自于此,而且显而易见。几乎每个人或多或少都会使用AC延长线,来延长相对于插座或供应电源线的电源插座位置。(没错,现在有许多东西都要用到电池供电——但也不是所有的东西都需要——而且就算是电池的充电器也需要AC电源。)但在使用过程中,两条线束很容易会脱落开来。如果完全脱落了,电力当然就中断了;如果只是部份分离,那么裸露的触点很可能会引发触电。就算让两线束之间保持紧密相连,如果到了户外使用时,在搭配使用时也可能会被水浸湿。总之,这些都不是什么想想情况。97Fednc

避免两条线之间相互「断开」的解决办法很简单,但经常被忽略:其实,只需将两条电线打个结(但这就浪费电线的长度了),或者使用简单的耐用型弹性电线或用大型线束「固定夹」加以固定即可。至于泡水的问题就比较麻烦了:但人们通常使用塑料袋和胶带来固定各种简易解决方案,而且也十分有效。97Fednc

由于延长线的这个问题十分普遍,市场上已经出现了许多解决方案,但显然还无法真正解决问题。最近,我读到一篇文章提到一种新的保护套办法——该保护套可以扣紧线束之间的连接处,以减轻其应力并保护环境。这种所谓的‘Twist and Seal’电线保护套管并不需要什么技术突破,但提供了不同的尺寸和样式以因应各种电线和设置,并受到Design Patent D847,098 S的专利保护。97Fednc

在《华尔街日报》(The Wall Street Journal)上刊登的这篇文章「我如何看待问题:企业家想让圣诞灯饰永不熄灭」(How I Thought of It: An Entrepreneur Wanted to Keep Holiday Lights From Going Out),主要针对发明家兼企业家Bryan Nooner的开发周期进行简短讨论,但也引起我的好奇心。在这篇报导中引述Nooner的话:「2011年,在绘画、雕刻、设计、建模和测试各种尺寸、形状和材料上就花费了数千个工时。」我的问题是:「究竟是什么样的设计问题占用掉这么多时间?」97Fednc

Twist & Seal, power_protection, P197Fednc

电源保护套管适用于标准的消费类延长线…(来源:Twist and Seal)97Fednc

我最先想到的是,Nooner可能是一位喜欢享受过程的工程师。对于他们这些像是喜爱修修补补的「工匠」(tinkerer)来说,事情永远都不对,因而无法轻言任务「完成」。如果您在项目团队中曾经遇过这样的工程师,那么应该很清楚他们对于项目是多么地有帮助,但也常令人伤脑筋吧?话虽如此,Nooner显然并没有处于无限的‘do-while’开发循环中:他在2011年之前开发出原型,2012年5月就在美国国家硬件展(National Hardware Show)期间展示了产品,他的Twist and Seal系列线束保护套管还赢得了年度最佳创新产品奬。故事的其余部份就不再不再赘言了,Twist and Seal系列产品及其各种变化版本如今在各大零售商和家庭装修中心都买的到。97Fednc

不过,我想进一步了解他面临哪些需要多次迭代的设计问题。是否需要如此地反复才能使产品兼容于许多电线和插头大小?实际的防水性能如何?符合监管标准吗?非技术人员或甚至是工程师一般如何解决这些问题?模具效率或其他细节(例如表面或底切太薄)是否存在问题?97Fednc

Twist & Seal, power_protection, P297Fednc

...当然也适于重工业应用。(来源:Twist and Seal)97Fednc

这种简单易用的解决方案当然值得喝采,它轻松地解决了一个普遍存在且明确定义的问题——尤其是因为该产品易于使用,显然可以把一件事做得很好,而且仅做一件事。在我们的产品世界中,由于充斥着各种嵌入式韧体、冗长的操作说明、令人厌烦(和恐惧)的持续现场更新以及太多的多功能性等等,如今看到一款产品能够专注于解决一项长久以来明显摆在眼前的问题,真的令人开心。97Fednc

您是否曾经针对一个普遍的问题设计过简单的解决方案,而且怀疑这么简单为什么以前做不到?您是否曾经考虑过进一步发展这项解决方案,但却受限于涉及投放市场的许多现实问题?97Fednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:Power “Protection” Takes Many Guises, From Simple to Sophisticated,编译:Susan Hong)97Fednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了