广告

跨阻放大器的输入阻抗:无穷大还是为零?究竟是多少?

2020-03-27 Bruce Trump 资深模拟工程师 阅读:
跨阻放大器的输入阻抗:无穷大还是为零?究竟是多少?
跨阻放大器(TIA)的输入阻抗是多少呢?无穷大还是零呢?都不是,究竟是多少?

跨阻放大器(TIA)的输入阻抗是多少呢?无穷大还是零呢?都不是,究竟是多少?没有事物是绝对为零或绝对无穷大的,对吗?即使你没有用过TIA, TIA输入阻抗的值会让你惊讶,值得你去理解。毕竟,一个反向放大器就是一个有输入电阻的TIA ,对吗?qH1ednc

TIA将一个电流信号转换成电压,并且经常用于测量弱电流,如图1所示。对于理想运放,有无穷大的开环增益和带宽,输入阻抗为零。运放的反馈回路使得V1保持虚地,得到一个零输入电阻。类似一个电流表,一个理想的电流测量电路的输入阻抗应该为零。qH1ednc

qH1ednc

我们仍然假设运放工作在理想条件下,但实际上运放的增益带宽积是有限的,我们应该思考其输入阻抗Z是多少?一些推论和8阶的代数式揭示出一个有趣的结果。图2是OPA314的开环增益随频率变化的曲线。对于今天的大多数运放,在一个较宽的频率范围内------超过通用器件的50倍,开环增益以一个恒定的斜率 -20dB/10倍频下降。它的增益带宽积是3MHz,所以在这个范围以内的任何频率下,其增益接近3MHz/f。qH1ednc

qH1ednc

在黄色方框内标出的因子揭示了结果。Z和Rf,f成正比,和增益带宽积成反比。但是,Z和f成正比意味着什么呢?它感觉更像一个基本的电路元件------电感。一个电感的阻抗是 ,所以我们可以将TIA的输入端等效为一个电感。qH1ednc

qH1ednc

这非常巧,是吗?也许你之前已经知道了这一点。在一个较宽的频率范围内,输入端可以视为一个电感负载。在大多数应用中,我们希望这个电感越小越好。RF通常是根据跨阻增益而定,所以更高的增益带宽积是减小这个电感的唯一方法。将这种方法应用于实际,你可能会从光电二极管或者电流转换电路中获得更多的洞察力。qH1ednc

没有更多新的东西在这里。各种使用运放合成的电感电路已经存在了很长一段时间,但是你可能没有将它和TIA或者反向放大器联系起来。建立这种联系会带来更深层次的思考和创造力。qH1ednc

更重要的是对运放输入电压的观察。假设在无穷大的开环增益条件下,我们经常希望运放的差模输入电压为0。但是,在一个较宽的频率范围内,一定不是这样的。增益带宽积、频率和输出电压之间的简单关系提供了一种简单的理解输入电压如何随着频率变化的方法。qH1ednc

当然,有许多限制条件:这是一个小信号分析。如果你使用足够大的信号幅度和频率驱动运放,运放将变得迟缓,且V1的电压降会增加,而且这种模型是假设运放的开环响应以简单的-20dB/10倍频斜率下降。许多运放可能在开环响应曲线上存在不平坦,这会给增益等于GBP/f模型带来影响。qH1ednc

一个额外的练习:我们能否改善电感模型,加入有限的DC开环增益影响?qH1ednc

阅读原文,请访问:edn.comqH1ednc

查看更多请点击:《看一个TI老工程师如何驯服精密放大器qH1ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 小小被动元器件也有大学问 在“高性能被动元器件发展论坛”上,七家厂商分享了有关高性能被动元器件的发展趋势及技术挑战等热门主题。会议最后还召开“国产高性能被动器件的机会和挑战”的圆桌论坛,共同探讨了被动元器件之高性能与挑战、国产化进程、缺货涨价和应对方法,以及市场应用四个重要议题。
  • DC/DC电路噪声滤波器仿真与验证 村田提供用于噪声滤波器设计支持的仿真工具,该工具可以根据从我们组件中选择的项目来计算和绘制滤波器电路的插入损耗特性,并绘制图形。为了证明仿真工具的有效性,最后比较了使用PCB的实际噪声抑制结果和仿真结果。
  • Arm在数据中心的价值:黄氏定律背后,英伟达打的什么算盘? 英伟达DPU这种类型的硬件,几乎可以代表数据中心的某一个发展方向。这个议题甚至恰好能够解答,英伟达为何要收购Arm,以及AMD为何要收购赛灵思。在近期英伟达GTC China首日主题演讲之后的圆桌论坛上,英伟达全球业务运营执行副总裁Jay Puri谈到了有关英伟达收购Arm的问题……
  • 猎户星空当选WISE2020中国新经济之王“最具影响力企业 在服务机器人领域,猎豹旗下的猎户星空凭借自研的语音OS和 Robot OS、导航、云端大脑等过硬的研发实力,2019年开始发力,2020在新冠疫情中转危为机,在商场、医疗、政务等20多个领域进行了应用的落地,也因此成功入选“2020年中国新经济之王最具影响力企业”榜单。
  • 2020 ICCAD 魏少军教授演讲实录 在2020 ICCAD(中国集成电路设计业2020年会)上,清华大学魏少军教授发表了《抓住机会实现跨越》报告,根据2020年的总体发展情况,对十三五中国芯片设计业的发展进行了小结,同时高屋建瓴,提出了几点思考,最后进行了总结,给中国集成电路设计行业的发展提出了指导。
  • 浅谈存储器芯片封装技术的挑战 存储器的封装工艺制程主要分为圆片超薄磨划、堆叠装片、打线、后段封装几个环节。其中,“圆片磨划”是存储技术的3大关键之一,其主要目的是硅片减薄和切割分离。这对于存储封装的轻量化、小型化发展十分重要,然而更薄的芯片需要更高级别的工艺能力和控制,这使得许多封装厂商面临着巨大的挑战。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了