向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

在做数字运算之前得先研究模拟算法

时间:2020-03-23 作者:Bill Schweber 阅读:
最近我与一名刚毕业的电子工程师聊天,对他不经意的说话感到有些惊讶。他声称,现在只要花很少的成本就可以实现很高的计算“能力”,因此几乎所有的技术分析问题都可以“立即”通过数字运算来解决。真是如此吗?

最近我在一次家庭活动中与一名刚毕业的电子工程师聊天,对他不经意的说话感到有些惊讶(尽管也许我不应该这样)。他声称,现在只要花很少的成本就可以实现很高的计算“能力”,因此几乎所有的技术分析问题都可以“立即”通过数字运算来解决。ymCednc

在我看来,这个观点似乎有点天真和简单,但也许他说得有道理。他甚至还举了一个非电子的范例,向我展示了他的“专长”不仅仅涉及电子领域——确实当今的毕业生都是多学科的。他指出,对于机械形状及其强度的分析,可以简单地使用有限元分析(FEA)软件包,将结构分为数千个甚至数百万个微小单元。然后,它就会根据材料的特性对所得的网格进行无数次计算,确定每个单元上的应力和相关应变。ymCednc

我当时不想展开激烈的辩论,但是我一直是Digital Engineering网站Tony Abbey月度教程专栏“Abbey’s Analysis”的定期读者(嘿,看来我也是多学科的)。Abbey经常会通过图形或文字的方式,讲解某些接头、接点和其他结构的标准FEA默认模型在哪些方面存在严重缺陷(因此在许多情况下,用户都需要自行设计更准确的模型并进行配置。如果不这样做,虽然能获得详细的结果并确实具有高精度,但是会有很大的误差)。ymCednc

巧合的是,我一直在读Nancy Atkinson最近出版的书Eight Years to the Moon: The History of the Apollo Missions。这本书不仅强调了所应强调的个人与个性,还讨论了一些必须要首先解决的未知解析因素。例如,轨道路径的力学、与其他轨道飞行器交会,以及在地球与月球之间的导航与制导,所有这些虽然我们现在都视其为常规,但是曾经却知之不多。ymCednc

有许多聪明的人——其中有许多在Charles Stark Draper和Richard H. Battin两位博士领导下的德雷珀实验室工作(Battin博士入门级的书An Introduction to the Mathematics and Methods of Astrodynamics非常经典)——研究了轨道和摄动的复杂方程,特别是那些关于让两个航天器相遇的方程。尽管他们当时可以使用最好的计算机(IBM 7094大型机),但是在项目早期花费了大部分时间的问题,却是在各种轨道和连接轨迹与场景下找出哪些方程是正确的。ymCednc

他们必须努力进行关键的校正,解决数据、跟踪和其他误差,同时平衡燃料、时间和不确定性因素——出于很多原因,通常不会有第二次机会。这在当时实在是太新了,阿波罗11号宇航员Edwin “Buzz” Aldrin于1963年在麻省理工学院发表的博士学位论文“Line-of-Sight Guidance Techniques for Manned Orbital Rendezvous”(载人轨道交会的视线引导技术)就是这个主题——几年以后才首次出现会合尝试——而且他是为数不多的详细研究过该主题的人之一,见ymCednc

图:这张图来自Buzz Aldrin在麻省理工学院的博士论文,它展示了一些有关轨道会合点的最早定量研究,而这个主题直到20世纪60年代才受到分析。图片来源:史密森尼航空航天博物馆ymCednc

尽管我们已拥有强大的处理器,但在匆忙进行计算和数字运算之前,仍需要进行大量的模拟分析。我刚看到的一篇论文,就提出了一个有趣且重要的问题:登陆艇如何确定火星上的真北?事实证明,这事并不容易。论文“Determining True North on Mars by Using a Sundial on InSight”(在InSight项目中使用日晷仪确定火星上的真北,注:Insight是一项火星任务)着眼于使用这种古老的导航技术,它所涉及的不仅仅是在已知的时间测量阴影角并去看预先计算的太阳方位表。ymCednc

首先,所描述的算法使用几何和三角学进行了详细的分析,并着眼于哪些地方可以简化——所有这些都是纯模拟的东西。仅在完成这一分析之后,才能使用计算“能力”来计算详细信息并得出答案。在进行这项分析之前就应用无数个CPU周期还为时过早——要解决这个难题首先必须充分理解其所有要素之间的多重关系。ymCednc

是否甚至有人告诉你,解决问题只是更多处理能力的问题呢?你曾经在对问题进行适当的分析之前,是否又有过“急于计算”(不是说估算)?ymCednc

(原文刊登于EDN美国版,参考链接:Do analog algorithms first, digital calculations laterymCednc

本文为《电子技术设计》2020年4月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里ymCednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 什么是运算放大器? 许多教材和参考指南将运算放大器(运放)定义为可以执行各种功能或操作(如放大、加法和减法)的专用集成电路(IC)。虽然我同意这个定义,但仍需注重芯片的输入引脚的电压。
  • 何时越小越好? 电源模块是一种通常采用开关模式的封装电源,能够轻松焊接到电路板上,用于将输入电压转换为经过控制的输出电压。与通常只在芯片上集成控制器和电源开关的开关稳压器IC相比,电源模块还可以集成无数个无源组件。
  • 利用有限元分析发挥自己的优势 物理事件的过程可以用微分方程来描述,这正是有限元分析的依据。这种分析相关的软件可能会很花钱,但是如果能编写自己的软件,则可以使用有限元分析概念来发挥巨大优势。
  • 低压运算放大器通过自举以实现高压信号和电源工作的应 能否让低压放大器自举来获得高压缓冲器?您可以采用具有出色输入特性的运算放大器,并进一步提高其性能,使其电压范围、增益精度、压摆率和失真性能均优于原来的运算放大器。
  • 适配器市场应用24W PSR架构,整合MOSFET全套方案 目前在消费类市场适配器应用上,大部分采用SSR架构(Secondary Side Regulator)的拓朴方案,而使用PSR 拓朴架构(Primary Side Regulator)的应用,大部分产品功率小于18W 电源产品。
  • 自适应负载调整和动态功率控制实现模拟输出的高效散热 模拟输出提出了一个特殊的挑战(如图1所示),因为需要在众多不同负载条件下提供高精度的有源驱动设定值。有源驱动器级此时变得尤为重要;损耗应尽量小。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告