广告

48伏电气系统为汽车业带来革新

2020-06-12 11:24:23 德州仪器 阅读:
当今许多汽车及其内燃机正在面临转型。它们配备了高级先进的安全功能、具有音乐厅般的音响系统、加热座椅以及可随动转向以照亮黑暗弯道的前照灯,俨然成为了汽车业的高科技奇迹。这些技术中的许多奇迹都依赖并消耗车辆电能。

由于排放法规的实施迫使汽车制造商寻求有效降低汽车碳排放量的方法,因此当今许多汽车及其内燃机正在面临转型。zcfednc

它们配备了高级先进的安全功能、具有音乐厅般的音响系统、加热座椅以及可随动转向以照亮黑暗弯道的前照灯,俨然成为了汽车业的高科技奇迹。zcfednc

这些技术中的许多奇迹都依赖并消耗车辆电能。zcfednc

“一个12伏的电气系统可提供约300安培的电流,峰值时约为600安培,勉强能为牵引电机和制动系统供电提供所需能量,更不用说提供驱动现代信息娱乐系统和半自主安全功能所需要的能量负载了。”负责公司混合动力、电动汽车和动力总成系统工程团队的Karl-Heinz Steinmetz说道:“这就需要迈出变革性的一步。”zcfednc

这一颠覆性的变革正是48伏电气系统。汽车动力驱动架构的这一进步满足了如今高耗能汽车更高的电力需求。功率增加还可以使内燃机更有效地运转,以帮助制造商更快地满足排放法规要求。zcfednc

业内很多制造商已接受这一变革。各汽车品牌制造商正在推出具有启停技术的轻度混合动力汽车。该技术可使发动机在汽车滑行、制动或停止时暂时关闭,然后迅速重新启动,并由新系统提供部分动力。低端轻度混合动力汽车制造商今年将紧随其后,效仿采用这一技术。与传统的混合动力汽车不同,轻度混合动力汽车(也称为电池辅助混合动力汽车)中的电机用于补充内燃机,不单独为汽车提供动力。zcfednc

除了减少有害废气排放并提高燃料经济性外,由48伏电气系统实现的功率增加还满足了消费者对具有高科技信息娱乐、便捷性和辅助驾驶安全功能汽车的日益增长的需求。一些48伏电气系统制造商称,可节省多达20%的燃油。(1)到2025年,二氧化碳的排放量可减少30%。(2)zcfednc

通过对这些系统的创新,汽车制造商可以在不影响动力、性能和驾驶安全性的前提下,满足更严苛的全球燃油经济性和排放标准,构建一个空气更清新、道路更安全的世界。zcfednc

zcfednc

Karl-Heinz Steinmetzzcfednc

赋能动力总成及更多系统

传统的12伏电气系统使用常规的铅酸电池和交流发电机为不断增加的各种耗能功能提供电能,如车内外照明、半自动防撞和车道偏移安全功能以及提供车载音频和视频的软硬件。zcfednc

48伏系统可更多的处理这些功率负载。现代汽车中的驱动涡轮增压器、空调压缩机、主动悬架系统、冷却液泵、机油泵和转向助力泵运行所需能量由电气系统提供,而非由以往为内燃机提供动力的曲轴皮带轮和皮带传动提供。zcfednc

通过从以前由产生二氧化碳的发动机驱动系统过渡到由48 伏电气系统电流驱动的系统,可使用更小尺寸的发动机。zcfednc

Karl-Heinz表示:“这使您可以缩小内燃机的尺寸,将六缸车减小为四缸车大小,从而提高燃油效率并降低二氧化碳排放量。”zcfednc

在技术层面,从12伏切换到48伏所需的结构性改造并不大,但是即使增加了更高的电压系统,汽车制造商仍在努力确保这种调整能保持长期韧性。在48伏系统中,由发电机而非12伏系统中使用的交流发电机对来自发动机的动力进行转换。此外,还需要48伏大容量锂基电池和再生制动系统。通过再生制动或恢复制动,发电机将汽车减速时损耗的动能转换为电能,存储在 48伏大容量电池中。zcfednc

Karl-Heinz表示:“通过再生制动,当驾驶员从交通信号灯处由停车变为加速行驶时,所存储的能量将被用于推动车辆前行,从而实现比通常情况下更快的速度。一些48伏电气系统还会在车辆滑行或停车时关闭发动机,从而提高燃油效率并降低排放。”zcfednc

汽车的HVAC系统也将从中受益。Karl-Heinz表示,许多驾驶员抱怨采用12伏系统的汽车停下时,暖通空调系统就会断电。zcfednc

他表示采用48伏系统的汽车不会发生这种情况,储存的能量可随时用于为车窗除霜并更快地加热座椅。zcfednc

越来越多的制造商正在使用新型红外发热板,直接为乘客供热,而不会浪费电能来加热汽车的其余部分。这类似于为乘客多穿一件衣服来保暖,而不是将恒温器温度调高。zcfednc

Karl-Heinz表示:“红外发热板的挑战在于每个座椅需要约500瓦功率,这给12伏电气系统带来了很大压力。48 伏系统不会出现这种情况。”zcfednc

未来汽车的核心系统

对于具有较高自主性和驾驶员辅助功能的车辆,当今 12 伏电气系统远不能提供车载计算机分析和处理传感器和摄像头数据所需的能量。zcfednc

“每台车载计算机预计将消耗约一千瓦到两千瓦的电力,这会让 12 伏系统的功率消耗殆尽,”Karl-Heinz 说道,无论未来的自主驾驶汽车是混合动力汽车还是纯电动汽车,它们都需要48伏系统来承受高耗能的负载。”zcfednc

许多汽车制造商正在将起动器和发电机、直流/直流转换器和电池管理等系统以及HVAC压缩机、正温度系数加热器和接线盒之类的车身电子器件转换为48伏系统。此外,氮化镓在车载充电效率和功率密度、精密电流感应、无线电池管理系统技术以及隔离和电源管理方面的进步都有助于减轻汽车重量,并减少驱动汽车形势所需的动力。zcfednc

Karl-Heinz表示:“电动汽车系统将成为未来汽车的核心系统,为实现道路更安全和空气更清洁提供所需动力。”zcfednc

  1.  https://www.whichcar.com.au/car-news/new-continental-hybrid-motor-promises-20-percent-lower-fuel-consumption
  2.  https://www.greencarcongress.com/2019/09/20190920-audi30.html
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了