广告

详解压电触觉技术:从致动原理到驱动

2020-07-08 12:04:10 阅读:
本文分享一些关于压电触觉技术的机械原理,以优化与它们的整合。

接前文:对比三大主流触觉反馈技术:ERM、LRA、压电各有什么优劣?zCsednc

压电触觉技术不同于我们在前一篇文章中讨论到的──偏心旋转质量(Eccentric rotating mass,ERM)和线性谐振致动器(Linear resonant actuators,LRA)──另外两种触觉技术,以下分享一些关于压电触觉技术的机械原理,以优化与它们的整合。zCsednc

替换ERM或LRA,可不是只要将压电致动器黏合在同一个固定位置就好;如果这样做了,所得到的结果将会让人大失所望,并将使你的团队朝错误的方向发展。压电触觉在不同的机械概念下运作,因此需要采用不同的方法才能成功实现更佳的触觉效果;让我们看看压电触觉与ERM和LRA之间的区隔,以及它们是如何影响其整合的。zCsednc

想象一下,某些使用LRA的手机──仅放上一个压电致动器,而带来只是一些响声之外,并无其他功能。即使触觉技术想要创造更先进的效果,它们也无法逃脱物理定律。要了解触觉致动器的工作原理,我们需要使用经典力学的一些最基本定律,即艾萨克·牛顿(Isaac Newton)的运动定律:zCsednc

第一定律──在惯性定律参考架构下,除非受外力作用,否则物体不是保持静止,就是继续以恒定速度运动。zCsednc

第二定律──在惯性定律参考架构下,作用在物体上的力(F)的向量和,等于该物体的质量(m)乘以该物体的加速度(a),也就是F = ma (这里假设质量m是恒定的)。zCsednc

第三定律──当一个物体在第二物体上施加力时,第二物体同时在第一物体上施加大小相等且方向相反的力。[1]zCsednc

触觉比较表中有些小瑕疵。我们感受到的回馈力是来自致动器的运动力。为什么业界要用加速度来比较回馈强度?你在比较表中看到的加速度值是基于每个触觉致动器在相同质量(Mass)上进行加速度计的测量结果。zCsednc

zCsednc

由于在测试基础上,是将每个致动器以相同质量去进行比较的,所以我们可以分别找出加速度值。因此加速度值最高的致动器的确会产生最强的回馈,但其效能却不能以相同的方式精确测量。zCsednc

将ERM或LRA放入一个质量上,可以确实移动它,但放到压电致动器上,是不能期望会得到相同的结果。量测压电致动器的加速度值,是测量致动器之上方质量。这可让我们了解为什么会有所不同,以及为什么需要使用不同的方法,才能成功的将压电触觉功能整合到产品设计中。zCsednc

触觉致动器组件

我们已经看到,触觉是由牛顿运动定律定义的。为了产生一个力量,触觉致动器需要两个组件:质量(Mass)和产生加速度的振动引擎。比较触觉技术时,你最终将比较出它们用于产生加速度之振动引擎种类。zCsednc

触觉致动器=振动引擎+质量(Mass)zCsednc

让我们看一下每个触觉致动器后面的组件,并了解为什么不能用压电致动器直接替换ERM或LRA。zCsednc

ERM致动器组件

ERM的振动是透过使用直流电机(振动引擎)旋转偏心质量产生的。此质量运动产生不平衡的力量,因此产生振动。虽然计算旋转偏心质量的运动轴心很复杂,但我们需要了解的是,不平衡质量的旋转所产生的力量会传递给直流电机。设备上的直流电机基座处,放入ERM致动器,这样感应到直流电机的振动便会传递到设备上。zCsednc

遵循牛顿的运动定律原则:旋转偏心质量和振动引擎的旋转产生了一个移动力量,该力量从致动器传递到与其相连的设备。zCsednc

LRA组件

LRA的振动是由音圈(振动引擎)驱动的悬浮磁性质量所产生的。音圈上的驱动电流会产生一个磁场,该磁场可以使弹簧在与弹簧对齐的同一轴上下移动。磁性质量需要振荡固定频率,以产生谐振并产生最大的力量。谐振频率取决于质量和悬架弹簧的刚性。zCsednc

再次重申牛顿的运动定律:音圈(a)导致的悬浮磁质量(m)运动产生了一个动力量,该动力通过弹簧传递到设备上。zCsednc

压电致动器组件zCsednc

在此范例中,我们将使用TDK PowerHap压电致动器,因为它们都具备相同的设计基础。这些压电致动器不像一般压电弹片那样运作。反而,PowerHap致动器在受到拉力(高压)时会机械收缩。压电材料的收缩迫使金属组件钹(cymbal)片膨胀,这就是致动器推压质量的方式。zCsednc

如果要在致动器的一侧推压质量,则另一侧需要靠在一个表面上,该表面会将力量传递到一个质量的设备上。同样,如果你的设备受到一个力量加上一个可推压质量,则牛顿的第二定律决定了你的设备最终将会振动。zCsednc

压电致动器之所以不能直接替代传统技术,是因为它们不是触觉致动器,而是振动引擎。就像ERM的直流电机和LRA的音圈一样,压电致动器没有内置质量。zCsednc

如果我们看一下牛顿的运动定律原理,压电致动器就是振动引擎,它会产生加速度(a),但是我们缺少质量(m)来产生有影响力的运动力。zCsednc

这是否意味着不可能用压电触觉代替LRA和ERM来振动整个设备?不,这代表你需要找到一个与压电致动器一起移动的质量,我们相信这是这项技术的一项优势。它提供了更大的灵活性来调整压电触觉,进而根据你的目标获得最佳的触觉效果。zCsednc

将压电致动器与小质量结合起来,非常适合于局部回馈并取代机械按钮。将压电致动器与较大质量结合,可以产生足够的力来振动与其链接的整个设备;该设备也可以是质量本身,例如汽车显示器,传统的触觉技术没有这种灵活性。zCsednc

选择最适合的压电触觉驱动IC

藉由压电触觉等性能更好的技术,触觉技术正进入一个新时代(参考前文)。虽然这些并不新鲜,但是随着压电驱动IC的发展,现在压电触觉技术的性能比以前更好。不过我们将探讨的是:并非所有压电驱动器效能都是一样的。zCsednc

在触觉技术领域,压电触觉驱动器的作用是放大电源电压,并将波形发送到压电致动器,来产生移动和触觉回馈。由于压电驱动IC的高功耗,压电触觉的采用率受到限制,然而随着Boréas Technologies采用CapDrive技术的压电驱动IC (BOS1901)问世后,情况又发生了变化。zCsednc

当你要为应用选择最佳的压电驱动器时,首先要知道的就是压电致动器所需要的电压。一般情况下,较大的压电致动器需要较高的电压才能产生触觉回馈。你的应用或设备可能对电源和空间具备特殊的触觉需求,因此你要选择最佳致动器来需要满足这些要求。zCsednc

举例来说,重量轻、空间较小、电源受限的移动设备不需要最强大的压电致动器来产生触觉回馈。但是对于空间和动力不是主要限制的汽车则恰好相反,触觉回馈必须足够强大,才能克服道路颠簸为车辆带来的影响。zCsednc

一旦选定了压电致动器,你就可以开始寻找匹配的压电触觉驱动器了。zCsednc

zCsednc

功耗更低,电池寿命更长。zCsednc

多年来高功耗问题一直困扰着压电触控技术领域。因为需要放大电源电压,并为压电致动器产生波形,所以对用于音讯产业的放大器设计来说,压电驱动器就是其微型版本。虽然这种设计可以产生高质量的波形,但是它们的功耗和产生的热能都很高。zCsednc

因此,作为成长最快的市场之一、也是主流应用之一的触觉技术,压电驱动器对于移动设备来说并不是很好的配备。zCsednc

CapDrive技术是一种压电触控驱动器架构,其功耗号称比竞争产品低10倍。该技术由Simon Chaput在哈佛大学攻读电机工程博士学位期间所研发的。如果希望将压电触觉器整合到一个功耗受限的设备(例如电池供电的移动设备),BOS1901压电驱动器是一个理想选择。zCsednc

更快的响应时间与更佳触觉效果

触觉回馈需要完美的时机才能产生最佳的回馈。由于带宽范围非常宽,压电触觉技术具备产生无限多种不同效果的优势,需要高效能的压电触觉驱动器尽快作出反应,来创建最佳的触觉回馈模式。zCsednc

压电致动器的响应时间通常接近瞬时,例如TDK PowerHap压电执行器产品系列的响应时间不到2毫秒(ms)。如果需要最快的响应时间,压电驱动器可能是一个限制因素;而BOS1901压电驱动IC可提供低于6ms的响应时间。zCsednc

设备中的可用空间会影响触觉驱动器的选择,BOS1901号称具备业界最小组件尺寸,仅需7个离散组件,采用4×4 mm QFN封装。QFN封装的整体解决方案大小为115 mm2。如果你增加压电致动器,我们的解决方案不仅是最小的压电解决方案,还是市面上最紧凑的触觉解决方案,将为你节省宝贵的电路板空间。zCsednc

CapDrive技术的优势不只是低功耗,也是一种可以将波形发送到致动器,又可以感测来自同一致动器压力的低功耗压电驱动器IC结构。这意味着,如果你需要一个在施加压力时的触发解决方案,例如以触控按钮代替机械按钮,则可以省下感测硬件,只依靠一个压电驱动器和一个压电致动器。zCsednc

压电致动器的工作原理类似于音源信号放大器,为了获得最清晰的音质,需要放大器提供最清晰的输出;为了产生最佳的触控回馈,需要压电驱动器提供最清晰的输出。用户本身能感受到的回馈质量,会因振动所产生不必要的噪声输出,而带来不好的感受,并且还会感受到不好的振动体验质量。zCsednc

zCsednc

CapDrive技术压电IC vs. 竞争对手压电ICzCsednc

本文由Boréas Technologies提供,Judith Cheng 编辑整理;责编:Demi XiazCsednc

参考原文:zCsednc

压电触觉致动器的机械原理zCsednc

Boréas的压电驱动器IC vs. 竞争对手的压电IC-触觉技术较量-第3部分zCsednc

  • 我是电刺激触觉技术派,动感重现虚拟现实技术研发与产业化(发明专利)http://blog.sina.com.cn/s/blog_55a84d500101c5ql.html
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • Melexis发布先进的磁性位置传感器芯片 Melexis今日宣布,推出全新的绝对磁性位置传感器芯片MLX90376,具备强大的杂散场抗干扰能力(SFI),适用于360°旋转汽车应用。
  • 思特威重磅推出首颗线阵CMOS图像传感器,赋能工业线阵相 思特威重磅推出首颗LA(Linear)线阵系列4K分辨率高速工业CMOS图像传感器——SC430LA。
  • 基于全新测量原理的二氧化碳传感器,清洁空气的好时机 除了代表水的H2O之外,代表二氧化碳的CO2可说是最闻名的化学组分。CO2传感器测量空气中的二氧化碳浓度,以便在超过浓度时作出应对。最新的型款相比先前的产品更小巧且更便宜。
  • 面向3D物体检测和碰撞预测的自动驾驶汽车仿真测试 汽车OEM及其关键技术合作伙伴已经在开发和测试真正的自动驾驶汽车——5级自动驾驶汽车——这种汽车可以在没有人类驾驶员的情况下沿着开阔的道路行驶。这在一定程度上是通过由机器学习算法驱动的传感器融合技术实现的。
  • 意法半导体生物识别支付平台获EMVCo 认证,有助于机构 意法半导体完整的技术平台获得行业认证,整合嵌入式安全单元和超低功耗通用微控制器,具有经济、强大的安全保护功能
  • 自动驾驶汽车的实现基础 汽车行业正在为2级(脚离开油门或刹车)和3级(手离开方向盘)车辆提供高级驾驶员辅助系统(ADAS)的首批实现方案,尽管从4级(眼睛离开道路)到5级(全自动驾驶)车辆的自动驾驶(AD)系统还处于努力开发当中。事实证明,这一挑战比几年前所预期的要更加困难。
  • 深入探访意法半导体(ST)第三代MEMS传感器 行业人士表示,MEMS产业未来智能化、微型化、集成化的趋势越来越明显。意法半导体(以下简称ST)从2006年率先在200毫米晶圆上量产MEMS传感器至今,其MEMS经过不断的发展,现在已经进化到了第三代。在2022年11月中旬的慕尼黑华南展现场,笔者对意法半导体亚太区模拟、MEMS和传感器产品部技术市场经理董恺进行了专访,同时深入地了解了ST的产品和技术。
  • 传感器和处理器如何打造更智能、更自主的机器人? 自主机器人是智能机器,无需人工控制或干预即可理解其环境并从中导航。尽管自主机器人技术相对较新,但已在工厂、仓库、城市和家庭等领域中广泛应用。例如,自主机器人可用于在仓库周围运输货物,或执行最后一英里配送,而其他类型的机器人可用于家庭吸尘清洁或修剪草坪。
  • 自热式达林顿晶体管对可构成新的气流传感器 在可用于气流检测的众多方法中,自热式热流量传感器简单、便宜、坚固而又灵敏。它们依赖于被加热传感器的空速和热阻抗之间的关系。本设计实例利用通常被认为是经典达林顿拓扑缺点的优势,将此数学关系转换成了实际电路。
  • 有助于低压测量的精密同步检波放大器设计 本设计实例提出了一种实用电路,借此就可实现同步检测,进而以高线性度和出色的抗噪性对小直流电压进行放大。在涉及电流分流器、称重传感器和热电偶等的测量中需要使用这种电路。
  • 机器人航位推算:深入研究里程计测试与分析 我保证会深入研究这个话题,但首先得从如何进行算法测试开始。我们之前在基于国际规范的模拟居家环境中收集了数据。但是,为了记录更多与航位推算精度直接相关的测试数据,我们在一个更简单、更小环境中对更多的方向变化进行了测试。
  • 如何用MEMS仿真模型设计地震仪 由于地震传感器网络分布较少(或有限),地震事件的表征和监测之间可能会发生延迟。解决这一问题的其中一种方法是使用基于MEMS的地震传感器作为传统传感网络的补充。MEMS传感器体积小,价格实惠,适用于局部监测,也可以提高地震监测能力。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了