广告

AI芯片有哪些关键指标?

2020-07-16 阅读:
目前,各种促进深度学习算法有效处理的新架构和新技术不断推向市场。那评价一款AI芯片最关键的指标到底是什么?

AI快速发展的当下,一款更符合应用需求的AI芯片将是加速AI与新经济社会各领域渗透融合、推动AI可持续发展的重要因素。目前,各种促进深度学习算法有效处理的新架构和新技术不断推向市场。那评价一款AI芯片最关键的指标到底是什么?B5Dednc

AI芯片分类的维度

最近几年AI的关注度都非常高,但今年热度似乎在下降。有人认为,这其中很重要的原因是AI的落地不如预期。清华大学长聘教授,微纳电子系副主任、微电子学研究所副所长,北京清微智能科技有限公司创始人尹首一对雷锋网表示:“我觉得从一个事物发展的角度来看,早期肯定是最吸引眼球的阶段,标志性事件也引发大家热烈的讨论,比如AlphaGo的人机大战。时间久了大家会觉得习以为常,AI也会逐步进入一个平稳的发展阶段。”B5Dednc

“对于AI当下的发展,不能简单的说AI落地不如预期,典型产品已经成功进入大家的日常生活。当然,AI落地本身肯定会遇到各种困难和挑战。“B5Dednc

这其中很关键的就是AI芯片,我们目前所说的AI芯片通常是指可以运行深度学习算法的芯片。由于CPU、GPU、FPGA的通用性,能够运行深度学习算法,从广义角度来看,它们属于AI芯片的范畴。B5Dednc

从狭义角度看,AI芯片是指针对AI的算法、应用和场景定制优化的芯片。也就是说,AI芯片应该和CPU、GPU、FPGA区分开。除了CPU、GPU、FPGA、ASIC这个常用分类维度,还有一些其他维度。B5Dednc

如果从纯数字架构的角度,可以将AI芯片分成时域计算架构、空域计算架构、可重构计算架构三种类型。具体而言,基于指令集驱动的芯片可归为时域计算架构,比如CPU;而FPGA则是典型的空域计算架构;可重构架构时间域可以动态重构,从某个时间片的角度看其计算又是空间域并行,它是时域和空域的结合。B5Dednc

尹首一表示,从宏观的角度看,可以把AI芯片架构分为这三类,当然从不同的侧面也可以有不同的分类,比如混合精度、稀疏处理等特点也可以成为分类维度。B5Dednc

但无论哪一类AI芯片,最为重要的还是最有效处理深度学习算法,进而解决实际问题。不断迭代的AI算法对AI芯片提出了越来越高的算力需求,因此,高峰值算力最先成为了AI芯片最受关注的指标。B5Dednc

AI芯片有哪些关键指标?

在一段时间内,峰值算力的提升成为了不少AI芯片公司工作的重点。但他们很快发现,冯·诺伊曼体系结构中,数据从存储器串行提取并写入到工作内存,导致相当长的延迟和能量开销。存储与计算之间的性能差异导致了内存墙问题,这也是阻碍AI芯片发展的关键。为此,打破内存墙的瓶颈,提升AI芯片的PPA(Performance,Power,Area)又成为了关注的焦点。B5Dednc

存算一体这个很早之前就被提出的技术成为了当下讨论较多的解决方案,有两种技术已经使用。一种把计算做到DRAM或SRAM存储器中,把计算和存储两部分的物理距离拉的特别近,另一种是把存储分散到计算的阵列中去。当前的另一个热点是采用新兴存储器RRAM来做,利用RRAM交叉开关阵列,用电压和电流的方式表达出矩阵相乘的结果。B5Dednc

尹首一认为,存算一体的思路是解决存储墙必然的一个趋势。但他也同时指出,内存墙的问题会长期存在。从AI芯片落地的角度看,内存墙问题是挑战之一、但不是全部,因为不同场景下内存墙的表现和影响不太一样,易用性是不可忽视的问题。B5Dednc

易用性既取决于芯片最初的定义和设计,后期的生态建设也非常关键。尹首一说:“芯片设计为了追求更高性能指标,通常设计决策会做一些折中,可能会牺牲掉一定的易用性。但反过来会发现,其实很多场景下,极致的性能并不一定会成为压倒性的要素,还是需要开发的便捷性,或者说配套的工具链完备性,这是AI芯片在落地过程中主要会碰到的困难。”B5Dednc

即便是需要极致算力的场景,在实际应用中也会发现,AI芯片的峰值算力和有效算力之间可能会有很大差距,这是否意味着有效算力比峰值算力更有说服力?尹首一认为,简单的用某个指标去评价一款AI芯片,可能有点以偏概全。很多应用场景关注的侧面可能完全不一样。B5Dednc

像自动驾驶应用,当下要解决从无到有的问题,因此会更加追求算力,功耗会放到第二位。而像家电的场景,成本则是一个很重要的因素。B5Dednc

“因此,功耗和性能如何去平衡,让AI芯片有足够的弹性去适应不同场景的需求,是AI芯片产品定义中比较重要的方面。”尹首一表示。B5Dednc

“可重构架构很大的优势就在于可以在灵活性和能量效率之间寻找一个比较好的平衡。还需要说的是,灵活性是为了适应AI算法的演进,但芯片追求更好PPA指标的目标是不会变的。”B5Dednc

AI芯片未来演进的关键是什么?

探索功耗和性能的平衡,适应AI算法的演进兼具良好的易用性是当下以及未来AI芯片发展的关键。“随着深度学习算法和人工智能应用的发展,AI芯片的问题肯定会不断涌现出来,我们现在能做的是提供足够灵活的方案,具备对未来算法一定程度上的可扩展性。”尹首一表示,“当然新的算法和需求可能会超出我们架构最初的一些设想,这需要架构不断演进。另一方面,当一些场景的需求足够大,就可以针对这些场景设计出更定制化的AI芯片。”B5Dednc

在这个过程中,很有利的一点是一些应用场景的需求已经基本稳定,当跨过这些场景所需的性能门槛后,AI芯片就未必需要去追求最新的算法。B5Dednc

这带来的好处是,当算法相对稳定后,可以把里面的要素分析的更透彻,通过不断迭代的软硬件协同优化,使AI芯片在具体场景中的优势更大程度上体现出来。B5Dednc

AI芯片的技术会跟随着时代的发展不断演进,只有技术和应用很好地结合才能更好地抓住AI的时代机遇。当前介绍人工智能和集成电路设计的书籍很多,但是针对人工智能芯片,长期以来缺乏一本系统性的专著。B5Dednc

尹首一教授借集成电路设计丛书编委会邀请的契机,撰写并出版了《人工智能芯片设计》,总结了人工智能芯片的发展历程以及当前面临的挑战和问题,分析了各项设计需求,介绍了人工智能芯片设计的新思路、新方法和新技术,展望了未来发展趋势。B5Dednc

B5Dednc

尹首一接受采访时表示,“撰写《人工智能芯片设计》最大的感受就是AI芯片的发展很快,比如三四年前探讨混合精度计算还不多,现在芯片设计中已经普遍使用。因此我们的书也希望能够很快再版,保持内容的不断更新,希望和AI芯片一起不断成长。”B5Dednc

关于当下新基建的时代机遇。尹首一认为,“从宏观上看,新基建肯定利好AI芯片,但还要具体情况具体分析。如果你的芯片进展和新基建很吻合,那应该把握好这个转瞬即逝的机遇。如果交集不多,那就练好内功,芯片的竞争最终比拼的还是技术和产品的综合实力。B5Dednc

责编:Demi XiaB5Dednc

(本文作者:包永刚;来源:雷锋网)B5Dednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何为数据集中器选择合适的处理器? 如今,随着终端设备数量的不断增加和大量数据交换需求的增长,对于数据集中器而言,在性能和接口方面将面临新的需求和挑战。因此, 为数据集中器选择核心处理器单元时,需考虑其支持各种通信接口,并能够提供可靠且精确的数据处理的能力。
  • 资深EMC工程师教你如何玩转天线 身为一位EMC工程师,我们使用多种类型的天线——现今频段越来越多;作为旅行中的EMC故障排除人员/顾问,我使用小型可折迭DIY天线进行故障排除。为了表征这些可调天线与频率变化的关系,能在扩展不同元素长度的情况下进行测量非常有用,以便了解在何处设置特定谐波的长度…
  • CPU到底是怎么识别代码的? 最近读到这样一篇好文章,从底层硬件角度出发剖析了一下CPU对代码的识别和读取,内容非常精彩,读完感觉大学里学到的很多东西瞬间联系起来了,这里分享给大家,希望能认真读完并有所收获。
  • 云计算将彻底改变电子设计 由于越来越多的问题将在云端解决,云计算将彻底改变电子设计。未来在选择处理器时的一个重要考虑因素将是,哪种处理器最容易支持从云端到嵌入式设备的实现。随着越来越多的嵌入式设备接入到IoT,什么计算应该在云端完成,什么计算应该在边缘完成,每个系统都必须从成本、速度、隐私等各个方面综合考虑。
  • 核酸检测需要用到哪些应用器件? PoC分子诊断技术可以帮助医生在患者首次就诊时快速做出诊断和治疗决策,患者无需等待数天才能获知检测结果,从而提高了医疗水平。本文将简要介绍这种检测方法,并详细介绍此类仪器主要模块中的一些实际应用器件。
  • 多功能LED驱动器可使用高于或低于LED灯串电平的输入电 本文介绍如何选择合适的拓扑及其相应的连接。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了