广告

AI芯片有哪些关键指标?

2020-07-16 阅读:
目前,各种促进深度学习算法有效处理的新架构和新技术不断推向市场。那评价一款AI芯片最关键的指标到底是什么?

AI快速发展的当下,一款更符合应用需求的AI芯片将是加速AI与新经济社会各领域渗透融合、推动AI可持续发展的重要因素。目前,各种促进深度学习算法有效处理的新架构和新技术不断推向市场。那评价一款AI芯片最关键的指标到底是什么?vRSednc

AI芯片分类的维度

最近几年AI的关注度都非常高,但今年热度似乎在下降。有人认为,这其中很重要的原因是AI的落地不如预期。清华大学长聘教授,微纳电子系副主任、微电子学研究所副所长,北京清微智能科技有限公司创始人尹首一对雷锋网表示:“我觉得从一个事物发展的角度来看,早期肯定是最吸引眼球的阶段,标志性事件也引发大家热烈的讨论,比如AlphaGo的人机大战。时间久了大家会觉得习以为常,AI也会逐步进入一个平稳的发展阶段。”vRSednc

“对于AI当下的发展,不能简单的说AI落地不如预期,典型产品已经成功进入大家的日常生活。当然,AI落地本身肯定会遇到各种困难和挑战。“vRSednc

这其中很关键的就是AI芯片,我们目前所说的AI芯片通常是指可以运行深度学习算法的芯片。由于CPU、GPU、FPGA的通用性,能够运行深度学习算法,从广义角度来看,它们属于AI芯片的范畴。vRSednc

从狭义角度看,AI芯片是指针对AI的算法、应用和场景定制优化的芯片。也就是说,AI芯片应该和CPU、GPU、FPGA区分开。除了CPU、GPU、FPGA、ASIC这个常用分类维度,还有一些其他维度。vRSednc

如果从纯数字架构的角度,可以将AI芯片分成时域计算架构、空域计算架构、可重构计算架构三种类型。具体而言,基于指令集驱动的芯片可归为时域计算架构,比如CPU;而FPGA则是典型的空域计算架构;可重构架构时间域可以动态重构,从某个时间片的角度看其计算又是空间域并行,它是时域和空域的结合。vRSednc

尹首一表示,从宏观的角度看,可以把AI芯片架构分为这三类,当然从不同的侧面也可以有不同的分类,比如混合精度、稀疏处理等特点也可以成为分类维度。vRSednc

但无论哪一类AI芯片,最为重要的还是最有效处理深度学习算法,进而解决实际问题。不断迭代的AI算法对AI芯片提出了越来越高的算力需求,因此,高峰值算力最先成为了AI芯片最受关注的指标。vRSednc

AI芯片有哪些关键指标?

在一段时间内,峰值算力的提升成为了不少AI芯片公司工作的重点。但他们很快发现,冯·诺伊曼体系结构中,数据从存储器串行提取并写入到工作内存,导致相当长的延迟和能量开销。存储与计算之间的性能差异导致了内存墙问题,这也是阻碍AI芯片发展的关键。为此,打破内存墙的瓶颈,提升AI芯片的PPA(Performance,Power,Area)又成为了关注的焦点。vRSednc

存算一体这个很早之前就被提出的技术成为了当下讨论较多的解决方案,有两种技术已经使用。一种把计算做到DRAM或SRAM存储器中,把计算和存储两部分的物理距离拉的特别近,另一种是把存储分散到计算的阵列中去。当前的另一个热点是采用新兴存储器RRAM来做,利用RRAM交叉开关阵列,用电压和电流的方式表达出矩阵相乘的结果。vRSednc

尹首一认为,存算一体的思路是解决存储墙必然的一个趋势。但他也同时指出,内存墙的问题会长期存在。从AI芯片落地的角度看,内存墙问题是挑战之一、但不是全部,因为不同场景下内存墙的表现和影响不太一样,易用性是不可忽视的问题。vRSednc

易用性既取决于芯片最初的定义和设计,后期的生态建设也非常关键。尹首一说:“芯片设计为了追求更高性能指标,通常设计决策会做一些折中,可能会牺牲掉一定的易用性。但反过来会发现,其实很多场景下,极致的性能并不一定会成为压倒性的要素,还是需要开发的便捷性,或者说配套的工具链完备性,这是AI芯片在落地过程中主要会碰到的困难。”vRSednc

即便是需要极致算力的场景,在实际应用中也会发现,AI芯片的峰值算力和有效算力之间可能会有很大差距,这是否意味着有效算力比峰值算力更有说服力?尹首一认为,简单的用某个指标去评价一款AI芯片,可能有点以偏概全。很多应用场景关注的侧面可能完全不一样。vRSednc

像自动驾驶应用,当下要解决从无到有的问题,因此会更加追求算力,功耗会放到第二位。而像家电的场景,成本则是一个很重要的因素。vRSednc

“因此,功耗和性能如何去平衡,让AI芯片有足够的弹性去适应不同场景的需求,是AI芯片产品定义中比较重要的方面。”尹首一表示。vRSednc

“可重构架构很大的优势就在于可以在灵活性和能量效率之间寻找一个比较好的平衡。还需要说的是,灵活性是为了适应AI算法的演进,但芯片追求更好PPA指标的目标是不会变的。”vRSednc

AI芯片未来演进的关键是什么?

探索功耗和性能的平衡,适应AI算法的演进兼具良好的易用性是当下以及未来AI芯片发展的关键。“随着深度学习算法和人工智能应用的发展,AI芯片的问题肯定会不断涌现出来,我们现在能做的是提供足够灵活的方案,具备对未来算法一定程度上的可扩展性。”尹首一表示,“当然新的算法和需求可能会超出我们架构最初的一些设想,这需要架构不断演进。另一方面,当一些场景的需求足够大,就可以针对这些场景设计出更定制化的AI芯片。”vRSednc

在这个过程中,很有利的一点是一些应用场景的需求已经基本稳定,当跨过这些场景所需的性能门槛后,AI芯片就未必需要去追求最新的算法。vRSednc

这带来的好处是,当算法相对稳定后,可以把里面的要素分析的更透彻,通过不断迭代的软硬件协同优化,使AI芯片在具体场景中的优势更大程度上体现出来。vRSednc

AI芯片的技术会跟随着时代的发展不断演进,只有技术和应用很好地结合才能更好地抓住AI的时代机遇。当前介绍人工智能和集成电路设计的书籍很多,但是针对人工智能芯片,长期以来缺乏一本系统性的专著。vRSednc

尹首一教授借集成电路设计丛书编委会邀请的契机,撰写并出版了《人工智能芯片设计》,总结了人工智能芯片的发展历程以及当前面临的挑战和问题,分析了各项设计需求,介绍了人工智能芯片设计的新思路、新方法和新技术,展望了未来发展趋势。vRSednc

vRSednc

尹首一接受采访时表示,“撰写《人工智能芯片设计》最大的感受就是AI芯片的发展很快,比如三四年前探讨混合精度计算还不多,现在芯片设计中已经普遍使用。因此我们的书也希望能够很快再版,保持内容的不断更新,希望和AI芯片一起不断成长。”vRSednc

关于当下新基建的时代机遇。尹首一认为,“从宏观上看,新基建肯定利好AI芯片,但还要具体情况具体分析。如果你的芯片进展和新基建很吻合,那应该把握好这个转瞬即逝的机遇。如果交集不多,那就练好内功,芯片的竞争最终比拼的还是技术和产品的综合实力。vRSednc

责编:Demi XiavRSednc

(本文作者:包永刚;来源:雷锋网)vRSednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • “中国IC设计成就奖”提名产品简介:超高耐压贴片SJ-MOS 维安面向全球市场,在800V及以上超高压产品进行了大量的技术投入,经过近多年的超高压SJ-MOSFET产品研发积累,已开发出国内非常领先的工艺技术,可以将小封装,高耐压导通电阻做到非常低水平。给客户提供高功率密度的800V及900V以上耐压产品。此举填补国内空白,打破了进口品牌垄断的局面。降低对国外产品依存度。维安1000V超结工艺产品技术利用电荷平衡原理实现高耐压的低导通电阻的特性。相比VD-MOSFET 结构工艺产品,SJ-MOSFET有更好的更小封装和成本优势。目前市场使用1000V耐压MOSFET,多以TO247, TO-3P甚至TO-268超大封装。维安1000V器件WMO05N100C2,使用TO-252/DPAK贴片封装,内阻低至3.5Ω,相比同规格VDMOSFET 6-7Ω 下降1倍。目前在工业控制,中低压配电等380VAC输入场景得到广泛应用。
  • 瑞萨电子推出64位RISC-V CPU内核RZ/Five通用MPU,开创R 产品作为瑞萨现有Arm CPU内核MPU阵容的新成员扩充RZ家族的产品组合
  • “中国IC设计成就奖”提名产品简介:功放芯片8002A优势 8002A是一款AB类,单声道带关断模式,桥式音频功率放大器。
  • 拆解小米WatchS1智能手表,看看主板上的主要IC来自哪些 根据小米官方的描述,小米智能手表Watch S1型号中的S,取自“Super”的缩写,代表了强大。也代表着S1是面对高端市场的产品。那究竟是否如其名呢?
  • “中国IC设计成就奖”提名产品简介:IPD滤波器IPD Filte IPD滤波器被认为是在sub-6G和毫米波频段上的最佳解决方案。它不仅克服了BAW、SAW无法很好支持5G宽带的劣势,而且与LTCC分离器件相比,IPD通常以裸芯片形式出现,有更好的一致性、更强的集成性、更小的尺寸,在成本上也有优势。
  • “中国IC设计成就奖”提名产品简介:工业级通用MCUAPM32 1. 基于32位ARM® Cortex®-M4内核 2. Flash:1024KB,SRAM:192KB,SDRAM:2MB 3. ESD等级达8KV 4. 3个12-bit高精度 ADC,外部通道数:24;2个12-bit DAC 5. 最多140个I/O,均可映射到外部中断向量
  • 恩智浦发布S32G汽车集成平台,加速软件定义汽车开发 GoldVIP为服务型网关、域控制器和车载计算机加快S32G芯片评估、软件开发和快速原型制作
  • “中国IC设计成就奖”提名产品:MediaTek MT9638智能电 MediaTek全新的4K智能电视芯片MT9638不仅拥有强劲的性能,还支持多项领先技术。其特性包括AI图像画质增强技术(AI-PQ),智能识别内容场景,优化每一帧画面的色彩饱和度、亮度、锐利度、动态补偿及降噪,提升整体画质。此外,MT9638支持AI分辨率技术(AI-SR),可智能提升画面的分辨率,让画面更清晰,结合MEMC动态补偿提供更精彩的4K观影体验。凭借电视芯片的先进技术和全面的产品组合,MediaTek在新时代的智能电视市场持续领跑。
  • “中国IC设计成就奖”提名产品:MediaTek天玑1200移动平 天玑 1200 基于台积电 6 纳米先进工艺制造,CPU 采用 1+3+4 的旗舰级三丛架构设计,包含 1 个主频高达 3.0GHz 的 Arm Cortex-A78 超大核,搭配九核 GPU 和六核 MediaTek APU 3.0,以及双通道 UFS 3.1,平台性能大幅提升。
  • “中国IC设计成就奖”提名产品:MediaTek迅鲲1300T移动 MediaTek 迅鲲1300T 移动计算平台基于台积电 6纳米制程打造,采用 Arm Cortex-A78 和 Cortex-A55 组成的八核架构 CPU,以及 Arm Mali-G77 MC9 九核 GPU,不仅提供强劲性能,还针对热门游戏进行了高帧率适配,无论办公还是游戏竞技,都能提供出色的性能与续航表现。迅鲲1300T 集成了 AI 处理器 MediaTek APU,高能效的 AI 算力为终端智能语音和视觉应用提供了强大 AI 驱动力。
  • “中国IC设计成就奖”提名产品:车规级高性能自动驾驶计 华山二号A1000 Pro自动驾驶计算芯片是目前国产性能最强的车规级高性能自动驾驶计算芯片。产品基于最高等级ASIL D车规安全标准打造,依托两大自研核心IP——车规级图像处理器NeuralIQ ISP以及车规级低功耗神经网络加速引擎DynamAI NN,得益于DynamAI NN大算力架构,芯片算力达到106TOPS(INT8),最高可达196 TOPS(INT4),继续保持国内最高算力自动驾驶算力芯片的位置,算力能支持高级别自动驾驶功能,从泊车、城市内部到高速场景的无缝衔接。
  • “中国IC设计成就奖”提名产品:蓝牙TWS耳机芯片BT892X 本芯片是一款高度集成的蓝牙音频SoC芯片,芯片主要应用于各种蓝牙音频以及音频设备产品,复合集成丰富的数字外设以及高性能的模拟电路,包括高性能32bit CPU+DSP指令,AEC,经典蓝牙,充电管理电路,高性能立体声,DAC和DAC等功能,具有高集成度和低成本,高性能和低功耗的优点。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了