广告

功率因数校正对实现新能效目标的重要性

2020-09-14 10:17:25 Mark Patrick,贸泽电子 阅读:
管理和控制当今电源系统的功率因数是提高所有运行条件下能效的关键,这其中包括传统上能效非常低的轻负载情况。面对不断提高的能效指标要求,消费者和企业业主也越来越意识到运营成本压力和废弃能源对环境的不利影响,具备足够的PFC已经成为目前市场中关键的采购要求。幸运的是,许多高集成度控制器可帮助工程师轻松实现各种复杂的PFC方案,以满足其特定的应用需求。

鉴于消费者越来越关注其电费支出,企业业主也希望遏制其螺旋式上升的运营成本,因此能源使用和能效水平正在受到比以往更加严格的审查。所有这一切都会因为日益重要的环境因素而进一步加强,人们普遍认识到,低能效电子设备产生的废热最终会对生态产生不利影响。Z6rednc

在电力电子领域,转换效率一直是讨论的重要话题,也是任何数据表中的关键参数之一。为了在最有利的条件下展示他们的产品,电源制造商通常会引用“最佳”的数字,一般是在大约80%负载下的能效指标。但是,需要注意的是,在实际应用中,系统所消耗的功率可能根本不是这个水平。Z6rednc

负载可能会上下显著波动,取决于具体应用的运行方式,并且在冗余配置中,所消耗的功率将总是比峰值低很多(除非出现故障情况)。这意味着系统的实际能效可能远低于所引用的值。Z6rednc

认识到这种情况的严重性后,标准机构、行业组织和政府组织都制定了新的能源规范。这些指导文件中通常引用所有工作负载(从20%到满负载)范围内最低能效水平的曲线,因此,设计工程师能够评估功率系统中的基本构建模块,以确定发生损耗的位置,然后采取措施消除这些损耗,从而确保满足新的能效要求。功率因数校正(PFC)对于解决潜在损耗源问题至关重要,因此应予以实施。Z6rednc

电源系统损耗

无损耗的电源系统当然具备完美的能效指标,虽然现代开关式半导体器件已经能够提供前所未有的性能指标,但在工作期间总会有一些损耗,从而导致能效水平降低。在电源系统中,需要注意的是两种类型的损耗:开关和传导。Z6rednc

传导损耗包括由桥式二极管正向电压引起的损耗,其与系统功率和MOSFET和IGBT等开关组件的导通电阻成比例。这些损耗与整个系统功率的平方成正比,随着输出功率的增加,损耗也会增大,损耗往往在更接近满载的情况下具有更大影响。传统上,过去的应用焦点也集中于此。Z6rednc

第二种损耗是开关损耗。随着设计工程师努力提高功率密度水平并缩小系统尺寸,开关频率不断增高,从而可以减小系统中大型磁性组件的尺寸。开关损耗与寄生电容的不断再充电有关(例如在开关组件栅极中出现的情况)。这些损耗与开关频率成比例,并且在整个工作功率范围内保持一致。这些损耗往往在较低功率水平下最为普遍,可能对系统能效产生重大影响。Z6rednc

为什么PFC对能效如此重要?

公用事业公司提供的所有电网电力均为交流电,电压波形始终为正弦波。然而,电流波形和相位却不一定是正弦波,这取决于供电系统负载。对于加热组件等最简单的纯电阻负载,负载电流与电压同相并保持为正弦波,在这种情况下计算输出功率仅仅是将电压和电流相乘。Z6rednc

而对于马达等他类型负载,可以包括无功分量(电感或电容)。在这种情况下,当电流波形保持为正弦波时,它将相对于电压波形有相移,其中负载中的电抗量确定相移大小。功率计算需要考虑相位,因此实际功率由下式确定:Z6rednc

实际功率 = V * I * cos(f)Z6rednc

这里f表示电压和电流波形之间的相位差,cos(f)被称为“位移因子”。在电阻性负载中,电流和电压具有相同相位,cos(f)的值为1,意味着实际功率与正常情况下一样,仍然是电压和电流乘积。然而,实际负载往往不是那么简单,特别是负载如果为开关模式电源(SMPS)情况下,这些系统通常具有二极管桥式整流器和涌浪电容器,将导致电流波形失去原来正弦波形状,并成为一系列尖峰。Z6rednc

由于波形失真且不再是正弦波,因此使用“失真因子”(cos(q))计算实际功率,失真因子与波形的总谐波失真(THD)相关。因此,在系统中如果电流和电压同相,但电流波形为非正弦波,以下等式适用:Z6rednc

实际功率 = V * I * cos(q)Z6rednc

在电流波形既出现相移又失真下,情况会变得复杂一些,这时必须考虑位移因子和失真因子:Z6rednc

实际功率 = V * I * cos(q) * cos(f)Z6rednc

任何系统功率因数都只是两个因素的乘积结果:Z6rednc

功率因数 = cos(q) * cos(f)Z6rednc

在实际应用中,这意味着电压和电流之间相位差越大,或者电流波形越失真,功率因数越低,因此实际功率越低。由于功率因数也会影响能效,目前这是电源设计人员应对的关键领域。Z6rednc

功率因数校正必要性

通过比较复杂的数学计算表明,如果频率相同,将两个正弦波相乘,只能得到一个大于零的值。因此,可以推断出谐波电流对系统的有用输出功率没有贡献,应该尽量减少或消除。Z6rednc

这正是为大多数人公认的主体PFC标准EN 61000-3-2所采用的方法,与美国环境保护署(EPA)能源之星(Energy Star)在内的许多现代能效规范一样,EN61000-3-2旨在通过定义严格的谐波电流限制来降低电流波形的THD,直至可以达到40次谐波。Z6rednc

实现PFC的最常用方法是在桥式整流器和大容量电容器之间插入一个主动级(active stage),可以通过使用市售PFC控制器中的几种常见控制方案之一来完成。可能最广泛使用的控制方案是连续导通模式(CCM),以固定频率运行,并且经常用在更高功率(高于300W)系统。一种流行的替代方案是临界传导模式(CrM)控制,这种方式通过仅在电感器电流降至零时进行开关,可省去快速恢复二极管,进而可降低系统成本,但导致可变的开关频率。CrM在低功率系统中尤其普遍,例如可用于照明系统。Z6rednc

PFC控制方案还可进一步改进,其目标是提供更高的能效,例如可将工作频率钳制在规定范围内。一些控制方案能够根据负载变化而改变传导模式,以确保实现最佳能效。Z6rednc

实用PFC解决方案

虽然可以使用分立组件从头开始设计PFC方案,但这种情况却很少出现,大多数工程师会选择使用内置PFC控制方案的现成控制IC。安森美半导体(ON Semiconductor)的FL7921R  CrM照明控制器是一款高集成度器件,它将PFC控制器与准谐振(QR)PWM控制器整合在一起,采用受控的导通时间技术,提供稳定的直流输出,执行自然的PFC。该IC包括一个THD优化电路,可减少过零点处的输入电流失真,从而提高功率因数。 PFC功能始终处于开启状态,以确保功率因数完全优化,其中也包括在重要的轻负载条件。Z6rednc

图1:ON Semiconductor FL7921R QR电流模式照明控制器。(来源:安森美半导体)Z6rednc

图2:FL7921R的功能模块图。(来源:安森美半导体)Z6rednc

图3:STMicroelectronics的STNRGPFx2双通道交错式PFC控制器。(来源:意法半导体)Z6rednc

STMicroelectronics的STNRGPFx2是一款双通道交错式CCM PFC数字控制器,适用于更高功率的PFC升压应用,如焊接、工业马达、电池充电器和电源等。该固定频率组件能够驱动两个交错式PFC通道,并且具备涌浪电流限制能力,业包括诸如相位消除(phase-shedding)运行等更复杂的功能。使用STMicroelectronics的eDesignSuite,客户可以快速轻松地配置器件。Z6rednc

总结

管理和控制当今电源系统的功率因数是提高所有运行条件下能效的关键,这其中包括传统上能效非常低的轻负载情况。面对不断提高的能效指标要求,消费者和企业业主也越来越意识到运营成本压力和废弃能源对环境的不利影响,具备足够的PFC已经成为目前市场中关键的采购要求。幸运的是,许多高集成度控制器可帮助工程师轻松实现各种复杂的PFC方案,以满足其特定的应用需求。.Z6rednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了