广告

信号发生器输出功率不够大怎么办?

2020-11-24 Thomas Brand,ADI现场应用工程师 阅读:
典型的信号发生器可提供25mV至5V输出电压。为了驱动50Ω或更大的负载,一般会在输出端使用大功率分立器件、多个并行器件,或者成本高昂的ASIC。其内部通常使用继电器来调节输出电平,因此会在一定程度上导致工作不连续。

信号发生器用来产生确定性电信号,其特性随时间推移而变化。如果这些信号表现为简单的周期性波形,如正弦波、方波或三角波,那么这种信号发生器就称为函数发生器。它们通常用于检查电路或PCBA的功能。将确定性信号加到被测电路的输入端,将输出端连接至相应的测量设备(例如示波器),用户就可以对其进行评估。过去,挑战通常包括如何设计信号发生器的输出级。本文将介绍如何利用电压增益放大器(VGA)和电流反馈放大器(CFA)设计小型经济的输出级。eYAednc

典型的信号发生器可提供25mV至5V输出电压。为了驱动50Ω或更大的负载,一般会在输出端使用大功率分立器件、多个并行器件,或者成本高昂的ASIC。其内部通常具有继电器,可以使设备在不同的放大或衰减水平之间进行切换,从而调节输出电平。根据需要,在对继电器开关而实现各种增益时,在一定程度上会导致工作不连续。简化方框图如1所示。eYAednc

eYAednc

1:典型信号发生器输出级的简化方框图。eYAednc

使用新款放大器IC作为输出级功放,可以在没有任何内部继电器的情况下直接驱动负载,因此可简化信号发生器的输出级设计,并降低复杂度和成本。这种输出的两个主要器件构成一个大功率输出级,可提供高速、高电压和大电流,以及具有连续线性微调功能的可变放大器(2)。eYAednc

eYAednc

2:带VGA的信号发生器输出级的简化方框图。eYAednc

首先,初始输入信号必须通过VGA放大或衰减。VGA的输出信号可以设置为所需的幅度,而与输入信号无关。例如,对于增益为10、输出幅度VOUT为2V的情况,VGA的输出幅度必须调整至0.2V。遗憾的是,许多VGA都会因为增益范围有限而产生瓶颈——增益范围大于45dB的情况很少。eYAednc

ADI公司在低功耗VGA AD8338上实现了0dB至80dB可编程增益范围。因此,在理想条件下,可以将信号发生器的输出幅度连续设置在0.5mV和5V之间,而无需使用额外的继电器或开关网络。通过去除这些机械元件,可以避免不连续的输出。因为数模转换器(DAC)和直接数字频率合成器(DDS)通常具有差分输出,所以AD8338提供全差分接口。此外,通过灵活的输入级,输入电流有任何的不对称,都可以通过内部反馈回路得到补偿。同时,内部节点保持在1.5V。在正常情况下,最大1.5V输入信号在500Ω输入电阻时会产生3mA电流。在更高输入幅度(例如15V)的情况下,可能需要在输入引脚串联一个更大的电阻——其阻值要确保所产生的电流同样为3mA大小。eYAednc

许多商用信号发生器在50Ω(正弦波)负载下提供最大250mW(24dBm)的有效输出功率。但是,这对于具有较大输出功率的应用通常不够用,例如测试HF放大器或生成超声波脉冲之所需。因此,还需要使用电流反馈放大器。ADA4870在±20V电源电压下,可以在输出端以17V的幅度提供1A的驱动电流。它可以在满载情况下生成高达23MHz的正弦波,因此成为了通用任意波形发生器的理想前端驱动器。为了优化输出信号摆幅,ADA4870的增益配置成10,因此所需的输入幅度为1.6V。但是,由于ADA4870具有地参考输入,而上游的AD8338具有差分输出,因此在两个器件之间应连接差分接收器放大器,而实现差分到地参考的转换。AD8130提供270MHz的增益带宽积(GBWP),压摆率为1090V/µs,非常适合这种应用。AD8338的输出限制在±1V,因此AD8130的中间增益应设计为1.6V/V。整体电路配置如3所示,其可在22.4V(39dBm)幅度和50Ω负载下实现20MHz带宽。eYAednc

eYAednc

3:采用分立设计的信号发生器输出级的简化电路。eYAednc

通过大功率的VGA(AD8338)、大功率的CFA(ADA4870)和差分接收器放大器(AD8130)的组合,就可以相对轻松地设计出小尺寸大功率的信号发生器输出级。它具有更高的系统可靠性、更长的服务寿命和更低的成本,因此比传统输出级更优。eYAednc

参考文献

Hunter, David. “Two New Devices Help Reinvent the Signal Generator.” Analog Dialogue, October 2014.eYAednc

(原文链接:Design of a Powerful Signal Generator Output Stage,由赵明灿编译)eYAednc

本文为《电子技术设计》2020年11月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里eYAednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 电子的内在是否存在“生命”或者“意识”? 对于所有实体,无论是电子、原子还是分子,都是多少具有一点体会和感知的产物,最初可能只是一个奇怪的意识,但最终可能发展成非常丰富的感觉。
  • 热搜的国产“阿法狗”有蹊跷!1年出新产品,2年迭代,技术和 近日,#中国公司研发机器狗超越世界纪录#这个话题冲上了微博热搜,阅读飙升至1.4亿。从2019年成立以来,仅用1年就推出新产品,2年迭代出的机器狗产品,速度就超过了MIT。所以,这家公司的技术和资金,都是从哪来的?
  • 何为LPTO技术?传iPhone 13终将使用120Hz高刷屏,苹果还 当iPhone12上市的时候,全球的果粉们都在期待着120Hz高刷新率的屏幕,然而,由于采用高通芯片,苹果不得不做出妥协。现在,再度传闻三星在为苹果把OLED生产线转换为LTPO生产线,苹果新机型iPhone 13会搭载120Hz LPTO高刷屏,这次,苹果还会让果粉失望吗?
  • 傅立叶变换有多牛?MP3、 JPG 和降噪耳机都靠它 傅里叶一直对热在材料内部和周围流动的方式很感兴趣,在研究这种现象的过程中,他推导出了傅立叶变换。傅立叶的重大突破是意识到复杂的信号可以通过简单地叠加一系列简单得多的信号来表示。于是,他选择通过叠加正弦波来完成这项工作。当然,当时的他不会意识到自己所做的贡献有多么重要。
  • R汽车携R-TECH及全新物种ES33亮相“R品牌共创者生态大 “R品牌共创者生态大会”在“全球创新之都”深圳盛大举办。在全球跨领域战略盟友及R品牌用户的共同见证下,“R-TECH高能智慧体”完成了精彩震撼的全球首秀。作为R汽车的全新技术品牌,“R-TECH高能智慧体”将成为R汽车向智能车时代迈进的新起点。
  • 瑞萨工厂电流过大引发火灾?临时停产一个月,丰田等受重创 近日瑞萨电子旗下的一间12英寸芯片工厂发生火灾,此次发生火灾的是瑞萨旗下生产车用半导体的重要工厂,也是主要的300毫米直径晶圆生产厂,三分之二的芯片产品属于汽车芯片。当地的消警人员初步认为,引起这场火灾的原因是N3大楼一楼的电镀设备因为电流过大而起火。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了