广告

三星研究出可拉伸高达 30% 的 OLED“皮肤”显示器

2021-06-21 16:40:40 samsung 阅读:
日前,三星先进技术研究所 (SAIT) 的研究人员在世界知名期刊《Science Advances》上发表了关于克服可拉伸设备局限性的技术的研究。SAIT 研究团队能够在单个设备中集成可拉伸的有机 LED (OLED) 显示器和光电容积脉搏波 (PPG) 传感器,以实时测量和显示用户的心率,从而创造出“可拉伸的电子皮肤”外形。

日前,三星先进技术研究所 (SAIT) 的研究人员在世界知名期刊《Science Advances》上发表了关于克服可拉伸设备局限性的技术的研究。VnKednc

通过这项研究,在具有高伸长率的可拉伸装置中实现了稳定的性能。鉴于该技术能够与现有的半导体工艺集成,这项研究也是业内首次证明可拉伸设备的商业化潜力。VnKednc

SAIT 研究团队能够在单个设备中集成可拉伸的有机 LED (OLED) 显示器和光电容积脉搏波 (PPG) 传感器,以实时测量和显示用户的心率,从而创造出“可拉伸的电子皮肤”外形。VnKednc

该测试用例的成功证明了将该技术扩展到进一步应用的可行性。这项研究有望在未来增加可拉伸设备的使用。VnKednc

可拉伸高达 30% 的 OLED“皮肤”显示器

这项研究的最大成就之一是该团队能够修改“弹性体”的成分和结构,弹性体是一种具有优异弹性和回弹力的高分子化合物,并利用现有的半导体制造工艺将其应用于可拉伸 OLED 显示器的基板和光学血流传感器在行业中首次出现。该团队随后能够确认传感器和显示器继续正常运行,并且在伸长率高达 30% 的情况下没有表现出任何性能下降。VnKednc

VnKednc

SAIT原型系统VnKednc

为了测试他们的研究,SAIT 研究人员将可拉伸的 PPG 心率传感器和 OLED 显示系统连接到靠近桡动脉的手腕内侧。3这样做可以让他们确认手腕运动没有导致任何性能下降,解决方案仍然可靠,皮肤伸长率高达 30%。此次测试也证实了传感器和 OLED 显示屏在拉伸 1000 次后仍能继续稳定工作。更重要的是,当测量来自移动手腕的信号时,发现传感器接收到的心跳信号比固定硅传感器接收的信号强 2.4 倍。VnKednc

“这项技术的优势在于,它可以让您在更长时间内测量您的生物特征数据,而无需在您睡觉或运动时移除溶液,因为贴片感觉就像是您皮肤的一部分。您还可以立即在屏幕上检查您的生物识别数据,而无需将其传输到外部设备,”该论文的通讯作者、首席研究员 Youngjun Yun 解释说。“该技术还可以扩展到用于成人、儿童和婴儿以及患有某些疾病的患者的可穿戴医疗保健产品中。”VnKednc

用可拉伸材料和结构克服技术挑战

实施可拉伸显示技术被证明是困难的,因为通常当显示器被拉伸或其形状被操纵时,设备要么损坏,要么性能下降。为了克服这个问题,所有的材料和元件,包括基板、电极、薄膜晶体管、发射材料层和传感器,都必须具有物理拉伸性以及保持其电性能的能力。VnKednc

因此,SAIT 研究人员用弹性体替换了现有可拉伸显示器中使用的塑料材料。SAIT 团队开发的系统是该领域第一个使用光刻工艺实现显示器和传感器的系统,可实现微图案化和大面积处理。VnKednc

弹性体是一种具有高弹性和回弹力的先进材料,但由于易受热影响,因此其应用于现有半导体工艺的能力受到限制。为了缓解这种情况,该团队通过调整其分子组成来增强材料的耐热性。他们还化学整合了某些分子链,以建立对半导体工艺中使用的材料的抵抗力。VnKednc

“我们应用了一个‘岛’结构来减轻由伸长引起的应力4,”该论文的共同第一作者、研究员 Yeongjun Lee 说。“在弹性体区域产生了更多应力,其弹性系数5相对较低,因此更容易变形。这使我们能够最大限度地减少 OLED 像素区域承受的压力,后者更容易受到这种压力的影响。我们在弹性体区域应用了一种抗变形的可拉伸电极材料(裂纹金属),这使得像素之间的空间和布线电极可以拉伸和收缩,而 OLED 像素本身不会变形。”VnKednc

VnKednc

岛状结构中的 OLED 和裂纹金属电极VnKednc

商业化和扩展应用

与现有的固定可穿戴传感器相比,可拉伸传感器的制造方式可以使连续心跳测量具有高度的灵敏度。该解决方案通过促进与皮肤的紧密粘附来实现这一点,从而最大限度地减少运动可能导致的性能不一致。6VnKednc

SAIT 团队开发的可拉伸传感器和 OLED 显示器是通过克服现有设备性能和操作流程的限制而产生的,包括当前可拉伸材料的限制。SAIT 团队所做的工作特别重要,因为它确保了弹性体材料的耐化学性和耐热性,从而使具有高分辨率和大屏幕的可拉伸设备在未来更有可能商业化。VnKednc

“我们的研究仍处于早期阶段,但我们的目标是通过将系统分辨率、可拉伸性和测量精度提高到使大规模生产成为可能的水平来实现和商业化可拉伸设备,”首席研究员 Jong Won Chung 说。该论文的作者。“除了在这个测试案例中应用的心跳传感器之外,我们还计划结合可拉伸传感器和高分辨率自由曲面显示器,使用户能够监测外周血氧饱和度、肌电图读数和血压等内容。”VnKednc

参考链接:samsung.com;Demi Xia 编译VnKednc

责编:DemiVnKednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 开源软件真的可靠吗? 乍看之下,采用开源软件似乎是个不错的办法,但归根究底,开源软件有几个特性可能会使其变得“邪恶”...
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • 国际象棋机器人Chessrobot夹断对手手指,意外还是设计缺 据悉,在7月19日的莫斯科国际象棋公开赛期间,一位7岁小男孩疑似因提前走子犯规手,意外被“对手”国际象棋机器人Chessrobot夹住手指,造成指骨骨折,该事件登上了热搜榜。该男孩是莫斯科9岁以下最强的30位棋手之一。
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • M2 Pro 和 M2 Max 或是苹果首款采用台积电3nm 工艺的 M1 Pro 和 M1 Max 最多可配置 10 核 CPU 和 32 核 GPU。借助 M2 Pro 和 M2 Max,Apple 有望突破这一门槛,为这两个领域带来更多的核心数量。目前M2 Pro相关的爆料很少,但据称M2 Max 有12 核 GPU 和 38 核 GPU。12 核 CPU 将包括 10 个性能核心和两个能效核心。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了