广告

经典调试案例:1500V直流电源突发噪声问题溯源

2021-07-01 12:19:04 Gerard Fonte 阅读:
我将示波器的地线夹子移到电源地,在“接地的”同相输入端上发现了噪声。我拿来一些粗连接线,直接从电源地连接到同相输入端。噪声消失了,电路恢复正常。成功了!

我有个客户是一家小制造商,在使用我们公司生产的一批新的 1500V 直流电源时遇到了噪声问题。M09ednc

我们公司生产这种产品已经有好长一段时间了。设计该产品的工程师早已离开公司,留下来的唯一文档是原理图,它采用了简单的闭环设计。该系统使用一个运放控制振荡器,进而使用一个升压变压器来产生高压,然后对其进行整流和滤波,产生直流输出。一小部分输出电压作为误差信号反馈到运放的反相输入端,以便在必要时调整振荡器频率。其同相输入端接地。M09ednc

部门经理很确定地跟我说,这一批电源和上一批电源的设计完全一样,没有进行任何修改。然而现在连一个旧电源都找不到了,寒冷中我着急上火得跳起来。M09ednc

噪声出现在输出端以及进入运算放大器和离开运算放大器的误差信号上。这种情况在闭环系统中很常见,断开回路只会导致电路发生故障。我在该电源上看到了同样的噪声,这可能是发生问题的原因,也可能只是表现出来的一个现象。M09ednc

我在电源上装了几个电容来滤除噪声。但是没用,还是有噪声。我试着在几处不同的地方加上电容,同样无济于事。M09ednc

M09ednc

征得客户的同意,我切断了一些走线,隔离了进入运算放大器的电源。我在正负电源上串联了一个50Ω的电阻,并用100和0.1µF的电容对其进行旁路。这个低通滤波器应该可以去除噪声,为芯片提供干净的电源,然而噪声仍然无处不在。M09ednc

不过,从这些尝试中我得出了一个重要结论:噪声肯定来自回路本身,而不是来自外部。电源噪声是问题的结果,而不是原因。快速变化的高压输出驱动电源过快,而使三端稳压器无法进行补偿。而且由于经过滤波的运算放大器电源上的噪声仍在产生,这说明运算放大器在不稳定地吸收电流,从而导致其本地电源波动。M09ednc

我对噪声进行检查,希望发现一点线索,找出产生噪声的根源,但它看起来只是普通的噪声。使用频谱分析仪可能会有帮助,但我手上只有示波器和伏欧毫安表。M09ednc

我切断回路,看是不是有什么东西正在产生噪声。我刚把回路切断,噪声就消失了,但这样一来,电路却不行了——这进一步证实噪声是在回路内部产生的。我盯着原理图,思考着:一定有一个点,噪声通过那里进入回路。终于,我找到了。M09ednc

运算放大器的同相输入端是接地的。如果不接地会怎样呢?这里开路肯定会拾取噪声并影响回路。我测量了该引脚对地的电阻,为0.23Ω,这就是欧姆表的引线电阻。胡说!M09ednc

不过,这确实引起了我思考。一切都表明运算放大器是噪声源。如果它不是来自反相输入端,那只能来自同相输入端。M09ednc

我将示波器探头放在同相输入端,它像老鼠一样安静。然后我看到示波器的地线靠近芯片。我将地线夹子移到电源地,并在“接地的”同相输入端上发现了噪声。我拿来一些粗连接线,直接从电源地连接到同相输入端。噪声消失了,电路恢复正常。成功了!M09ednc

显然,有人对 PCB 进行了更改,否则,上一批产品也会出现同样的故障。经理承认PCB确实有一些改变,“但电路没有变。”——只有有心人才看得到变化。M09ednc

作者Gerard Fonte 是纽约电子产品设计和开发公司 The Pak Engineers的首席工程师。M09ednc

(原文刊登于Aspencore旗下EDN英文网站,参考链接:Tracing down a noise problem,由Jenny Liao编译。)M09ednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了