广告

拆解:Pixel Stand为(某些)谷歌粉丝提供比Qi更快的无线充电

2021-12-28 15:07:12 Brian Dipert 阅读:
第一代Pixel Stand与Pixel 3和Pixel 3 XL加大版一起推出,这些是第一批支持无线充电的Google手机。也就是说,它还以高于5W的充电速度对后续的Pixel 4和Pixel 5提供支持。但是,它不支持“A”Pixel版本,这些版本往往是我所主要使用的手机,为了节省成本,它们省略了无线充电支持。我从eBay上买到了这个二手设备,本文就来拆解它!

在我2019年3月下旬无线充电进行状态更新文章中——该文章是在对一款单线圈Qi充电器拆解后不久和在随后对另一款双线圈设备拆解之前所发布的——我写道:oyRednc

谷歌在2018年底为Pixel 3智能手机系列添加了原生无线充电(而不是将其作为笨拙的附件补充)。……未经许可的第三方充电器仅限于5W充电。即使是六个月后的现在,对Pixel 3s进行10W充电的唯一选择也是谷歌自己的79美元Pixel Stand(是因为担心兼容性,盈利能力,还是两者都有?你来决定)。oyRednc

oyRednc

从那以后,我一直渴望了解它的内部,试图弄清楚它是如何实现差异化的。回想起来,我的独家声明并不完全准确,但实际上我仍然判断正确。正如我之前链接到的9 to 5 Google一文中所指出的那样,贝尔金还发布了“Boost Up”充电器的底座支架版本,可以为Pixel手机提供10W充电功能(以及对标准手机提供5W支持):oyRednc

oyRednc

它们已经下架(由于贝尔金网站上的相应页面不再存在,我所链接到的是亚马逊的产品页面),而且我也感觉它们从未大量发货。具有讽刺意味的是,谷歌网站上也不再存在第一代Pixel Stand的产品页面,它会自动转发到新发布(但在我撰写本文时尚未发货)的第二代Pixel Stand的页面,这代产品可为最新的Pixel 6系列手机提供高达23W的充电功率,并对其他支持EPP的手机提供高达15W的支持:oyRednc

oyRednc

这是亚马逊作为第一代Pixel Stand替代信息来源的页面oyRednc

说到兼容性,这篇文章的标题中为什么要加“(某些)”这个限定词呢?第一代Pixel Stand与Pixel 3Pixel 3 XL加大版一起推出,这些是第一批支持无线充电的Google手机(上述链接指向iFixit对这两款手机的拆解,因此可以看到充电器的电路如何与手机感应式匹配)。也就是说,它还以高于5W的充电速度对后续的Pixel 4和Pixel 5提供支持。但是,它不支持“A”Pixel版本,这些版本往往是我所主要使用的手机,为了节省成本,它们省略了无线充电支持。oyRednc

上面的介绍已经够多了,让我们开始进行拆解吧!我会像往常一样从一些概览照片开始(我从eBay上买了这个二手设备;支架本身没有使用过,但原主人保留了1.5m USB-C电缆和18W USB PD电源适配器,用于对手机进行有线充电):oyRednc

oyRednc

看下我们的拆解对象:oyRednc

oyRednc

注意充电板上的塑料保护膜(在使用前要取下)。下面是支架(去除了塑料薄膜)的独立照片,并在上面放了一个0.75"(19.1mm)直径的1美分普通硬币,用于尺寸比较(根据亚马逊产品页面,Pixel Stand的尺寸为4.1in×3.6in×4.1in,重5.6盎司):oyRednc

oyRednc

现在把我的一部Pixel 3a手机(它同样不支持无线充电……这里只是用于概念演示)安装在它上面:oyRednc

oyRednc

oyRednc

取下手机,将Pixel Stand倒置,然后……看到的还是保护塑料!oyRednc

oyRednc

将它取下,可以清楚地看到USB-C端口:oyRednc

oyRednc

顺便说一下,底部(以及其他地方)还印有FCC ID:2APYSG019C。不管有没有用,认证文件将该设备标识为“Lanto Electronic Ltd无线充电器”。oyRednc

是时候研究内部了,从底部开始,结果比我担心的要容易移除。与这个尼安德特人不同的是,我选择了文明的小平头螺丝刀,而不是猎刀:oyRednc

oyRednc

解开几个标签,撕掉一些胶水,然后就可以看到:oyRednc

oyRednc

也没什么可看的,但那两个法拉第笼(或散热器,还是两者?)看上去有点意思:oyRednc

oyRednc

这时,我将注意力转移到充电板上,又一次很容易地将它分开……至少在某种程度上:oyRednc

oyRednc

oyRednc

很难将它完全从底座拆开;直到我重新检查底座,从中心拆下两个螺丝,然后剪断一些电线:oyRednc

oyRednc

oyRednc

这样更好!oyRednc

oyRednc

前盖(底部)的内部没什么好写的,而后半部分(顶部)则更为有趣。它在概念上让人联想到Seneo设备的双线圈布局——这款设备的拆解EDN上也有发布,包括“纵向”(顶部)线圈和“横向”(底部)线圈两个方向(针对两种可能的设备放置方向进行了优化;顺便说一句,您是否也注意到充电器内置的那个漂亮的隆起线,可以防止设备滑落?)。但它在每个线圈的中间添加了一个方形的传感器(还是别的东西):oyRednc

oyRednc

我猜它们用于温度监控目的,可防止过热。(读者朋友们,你们知道吗?)oyRednc

将两个线圈组件固定在一起的金属板(Seneo则采用了脆弱的塑料),其背面被用胶带紧紧地粘在了它后面的半个塑料外壳上:oyRednc

oyRednc

与此同时,让我们把注意力再次转移到底座中的PCB上。在我将四颗螺丝拆下并将金属板从顶部半个塑料外壳上剥离时,最初的拆卸步骤很简单:oyRednc

oyRednc

oyRednc

这时,我开始被难住了——两个金属“叶瓣”(找不到更好的词)被牢固地连接到PCB上,一开始我想尽办法,用平头螺丝刀撬开它们,但却并未获得成功。因此,我暂时把注意力转移到了PCB和它后面的金属板之间的连接处,这样就更适合拆卸:oyRednc

oyRednc

这是半透明透镜的特写,它对位于PCB上的LED的输出进行聚焦并将其重定向到外部世界:oyRednc

oyRednc

说到这里……回到PCB正面。您是否已注意到有七个孔:一个“叶瓣”中有四个孔,“另一个”中则有三个孔?oyRednc

oyRednc

于是,我尝试将精密镊子的一个尖端卡在其中一个孔中,然后用它来抬起“叶瓣”,但这样做只会把我的镊子尖端给弄弯。热风枪也不管用,但我因此了解到PCB背面包括几片粘性保护胶带:oyRednc

oyRednc

然而,我很高兴地向大家报告,在我的使劲下,我最终利用平头螺丝刀并利用USB-C连接器作为支点取得了成功:oyRednc

oyRednc

oyRednc

oyRednc

瞧!首先请注意上述PCB底部的那个LED。oyRednc

oyRednc

让我们近距离观察一下:oyRednc

oyRednc

在照片的左下部分是两个横向的主IC:一个是IDT(现在是Renesas)“用于15W应用”(我引用了数据手册)的P9242-R无线充电发射器,另一个是华邦(Winbond)的25X40CLNIG 4Mb串行闪存。右上部分中有两个相同标记的器件:oyRednc

6996GA8X2DoyRednc

这个拆解告诉我它们是AOS AON6996双N沟道MOSFET器件。PCB的另一侧还有两个这种器件:oyRednc

oyRednc

与它们在一起的是一个神秘的(至少对我而言)意法半导体的STM32微控制器(你可能还记得,我也无法在Seneo拆解中明确地识别出这款意法半导体的MCU)。同样,读者朋友们,你们知道吗?oyRednc

诚然,我对退出这个项目仍然有点沮丧,因为我无法确切地弄清楚Pixel Stand是如何知道它上面有一部Pixel手机的(而不是传统的支持Qi的设备),然后因此提高它的充电功率。在这个Reddit小型拆解和讨论主题中,有个帖子假设说“能够吸收10W的功率是由嵌入在Qi传输中的数据流所触发的”。oyRednc

我不知道在无线发射器和接收器之间是否发生过任何特定的无线握手,但我也承认我对Qi规范也不是很熟悉。我能从维基百科的Qi条目中所确定的是:oyRednc

输出电压的调节由数字控制回路提供,其中,充电接收器充电发射进行通信,然后请求提供更多或更少的功率通过反向散射调制从充电接收器到充电发射器的通信是单向的。在反向散射调制中,一旦将充电接收器线圈加载进去就会改变充电发射器的电流吸收然后这些电流变化进行监控并将其解调为两个设备协同工作所需的信息。oyRednc

一如既往,欢迎知识渊博的读者在评论框中对这篇文章或我所介绍(或忽略)的任何其他内容提出反馈!oyRednc

(原文刊登于EDN美国版,参考链接:Teardown: Pixel Stand offers faster-than-Qi wireless charging for (some) Google fans,由Franklin Zhao编译。)oyRednc

本文为《电子技术设计》2022年1月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里oyRednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Brian Dipert
EDN资深博客作者。Brian Dipert是前EDN杂志的高级技术编辑。 他是BDTi的高级分析师,嵌入式视觉联盟的主编,以及AnandTech、EDN杂志和《低功耗设计》的特约编辑。 他也是Sierra Media的创始人。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何实现最精确的授时和同步? 在为关键基础设施制定PNT解决方案时,运营商必须做出两个最关键的决策:1) 是否应在架构的每一层上部署弹性、冗余和安全性?2) 应采用哪种安全策略?
  • 如何在高压应用中利用反相降压-升压拓扑 对于需要生成负电压轨的应用,可以考虑多种拓扑结构,如“生成负电压的艺术”一文所述。但是,如果输入和/或输出端的绝对电压超过24V,并且所需的输出电流可以达到几安,则充电泵和LDO负压稳压器将会因其低电流能力被弃用,而其电磁组件的尺寸,会导致反激式和Ćuk转换器解决方案变得相当复杂。因此,在这种条件下,反相降压-升压拓扑能在高效率和小尺寸之间达成较好的折衷效果。
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 电化学腐蚀制备新技术发表,“一步到位”制作电池电极 据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。
  • 金升阳汽车电子一站式电源解决方案 金升阳汽车电子一站式电源解决方案
  • 满足车规级、医规级的芯片级DC/DC电源——B0505ST16-W 金升阳推出芯片级隔离电源产品B0505ST16-W5,为高端芯片应用助力。金升阳芯片级电源B0505ST16-W5采用新一代自主研发技术,电路技术和电气性能都有质的提高,在汽车电子等领域,朝着小型化、功能集成化的方向迈进。
  • 实现测试测量突破性创新,采用ASIC还是FPGA? 作为世界创新的幕后英雄,特别是在电子器件和通信技术方面,工程师们要开发测试设备,验证这些新技术,以把新技术推向市场。这些工程师必须运行尖端技术,处理预测行业和创新未来的挑战。在开创未来的过程中,测试测量工程师面临的基础性创新挑战之一,是确定设计中采用专用集成电路(ASIC)还是现场可编程门阵列(FPGA)。
  • 大联大品佳集团推出基于Infineon iMotion产品的冰箱 大联大控股宣布,其旗下品佳推出基于英飞凌(Infineon)IMC101T的冰箱压缩机方案。
  • 低功耗“刚需”加速物联网应用落地,用独特MCU设计的省 低功耗MCU涉及的关键技术和设计挑战非常多,从如何定义系统架构、构建平台和MCU生态系统到数字电路设计,从工艺的选择到模拟电路设计,从可靠性设计到低功耗设计,从应用创新到满足客户各种需求等,每方面都对设计公司提出很高要求……
  • 无线充解决方案 SCT6324X系列是一款高度集成的电源管理IC,能够实现符合WPC规范的无线电源发射器系统的高性能、高效率和成本效益,以支持高达20W的功率传输,适用特定于无线应用程序的控制器或基于通用MCU的发射器控制器。
  • 谈谈智能舱座应用 智能舱座的出现体现了人们对于智能汽车的向往,注重车内感知系统和交互模式,那么随着车内感知系统和交互模式的升级,对车规级芯片的需求与要求日益增长。
  • 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品生态
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了