广告

芯片里面有几千万的晶体管是怎么实现的?

时间:2019-04-17 作者:呆涛 阅读:
在 IC 设计中,逻辑合成这个步骤便是将确定无误的 HDL code,放入电子设计自动化工具(EDA tool),让电脑将 HDL code 转换成逻辑电路,产生如下的电路图。之后,反覆的确定此逻辑闸设计图是否符合规格并修改,直到功能正确为止。

要想造个芯片, 首先, 你得画出来一个长这样的玩意儿给Foundry (外包的晶圆制造公司)

001ednc20190417

在 IC 设计中,逻辑合成这个步骤便是将确定无误的 HDL code,放入电子设计自动化工具(EDA tool),让电脑将 HDL code 转换成逻辑电路,产生如下的电路图。之后,反覆的确定此逻辑闸设计图是否符合规格并修改,直到功能正确为止。

002ednc20190417

控制单元合成后的结果

最后,将合成完的程式码再放入另一套 EDA tool,进行电路布局与绕线(Place And Route)。在经过不断的检测后,便会形成如下的电路图。图中可以看到蓝、红、绿、黄等不同颜色,每种不同的颜色就代表着一张光罩。

003ednc20190417

完成电路布局与绕线的结果

然后Foundry是怎么做的呢? 大体上分为以下几步:

首先搞到一块圆圆的硅晶圆, (就是一大块晶体硅, 打磨的很光滑, 一般是圆的)

此处重新排版, 图片按照生产步骤排列. 但是步骤总结单独写出.

1. 湿洗 (用各种试剂保持硅晶圆表面没有杂质)

2. 光刻 (用紫外线透过蒙版照射硅晶圆, 被照到的地方就会容易被洗掉, 没被照到的地方就保持原样. 于是就可以在硅晶圆上面刻出想要的图案. 注意, 此时还没有加入杂质, 依然是一个硅晶圆. )

3. 离子注入 (在硅晶圆不同的位置加入不同的杂质, 不同杂质根据浓度/位置的不同就组成了场效应管.)

4.1干蚀刻 (之前用光刻出来的形状有许多其实不是我们需要的,而是为了离子注入而蚀刻的. 现在就要用等离子体把他们洗掉, 或者是一些第一步光刻先不需要刻出来的结构, 这一步进行蚀刻).

4.2湿蚀刻 (进一步洗掉, 但是用的是试剂, 所以叫湿蚀刻).

--- 以上步骤完成后, 场效应管就已经被做出来啦~ 但是以上步骤一般都不止做一次, 很可能需要反反复复的做, 以达到要求. ---

5 等离子冲洗 (用较弱的等离子束轰击整个芯片)

6 热处理, 其中又分为:

6.1 快速热退火 (就是瞬间把整个片子通过大功率灯啥的照到1200摄氏度以上, 然后慢慢地冷却下来, 为了使得注入的离子能更好的被启动以及热氧化)

6.2 退火

6.3 热氧化 (制造出二氧化硅, 也即场效应管的栅极(gate) )

7 化学气相淀积(CVD), 进一步精细处理表面的各种物质

8 物理气相淀积 (PVD), 类似, 而且可以给敏感部件加coating

9 分子束外延 (MBE) 如果需要长单晶的话就需要这个..

10 电镀处理

11 化学/机械 表面处理

然后芯片就差不多了, 接下来还要:

12 晶圆测试

13 晶圆打磨

就可以出厂封装了.

我们来一步步看: 

004ednc20190417

1上面是氧化层, 下面是衬底(硅) -- 湿洗

005ednc20190417

2 一般来说, 先对整个衬底注入少量(10^10 ~ 10^13 / cm^3) 的P型物质(最外层少一个电子), 作为衬底 -- 离子注入

006ednc20190417

3先加入Photo-resist, 保护住不想被蚀刻的地方 -- 光刻

007ednc20190417

4.上掩膜! (就是那个标注Cr的地方. 中间空的表示没有遮盖, 黑的表示遮住了.) -- 光刻

008ednc20190417

5 紫外线照上去... 下面被照得那一块就被反应了 -- 光刻

009ednc20190417

6.撤去掩膜. -- 光刻

010ednc20190417

7 把暴露出来的氧化层洗掉, 露出硅层(就可以注入离子了) -- 光刻

011ednc20190417

8 把保护层撤去. 这样就得到了一个准备注入的硅片. 这一步会反复在硅片上进行(几十次甚至上百次).  -- 光刻

012ednc20190417

9 然后光刻完毕后, 往里面狠狠地插入一块少量(10^14 ~ 10^16 /cm^3) 注入的N型物质,就做成了一个N-well (N-井) -- 离子注入

013ednc20190417

10 用干蚀刻把需要P-well的地方也蚀刻出来. 也可以再次使用光刻刻出来. -- 干蚀刻

014ednc20190417

11 上图将P-型半导体上部再次氧化出一层薄薄的二氧化硅. -- 热处理

015ednc20190417

12 用分子束外延处理长出的一层多晶硅, 该层可导电 -- 分子束外延

016ednc20190417

13 进一步的蚀刻, 做出精细的结构. (在退火以及部分CVD) -- 重复3-8光刻 + 湿蚀刻

017ednc20190417

14 再次狠狠地插入大量(10^18 ~ 10^20 / cm^3) 注入的P/N型物质, 此时注意MOSFET已经基本成型. -- 离子注入

018ednc20190417

15 用气相积淀 形成的氮化物层 -- 化学气相积淀

019ednc20190417

16 将氮化物蚀刻出沟道 -- 光刻 + 湿蚀刻

020ednc20190417

17 物理气相积淀长出 金属层  -- 物理气相积淀

021ednc20190417

18 将多余金属层蚀刻. 光刻 + 湿蚀刻

最开始那个芯片, 大小大约是1.5mm x 0.8mm

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 台积电展示7nm自研芯片“This”,有什么特别之处? 台积电在日本京都举办的超大规模集成电路研讨会(VLSI Symposium)上,展示了名为“This”的芯片,由台积电自行完成设计与生产。这颗芯片的架构并非最新最强,仅仅采用Cortex-A72四核+6MiB三级缓存的双芯片组合设计,无法与主流旗舰平台的Cortex-A76相提并论。那么这个“This”有什么特别之处吗?
  • 不用跳线就能连接Arduino与面包板? 我一看到BreadShield开始执行,马上就了解到这些年本来应该可以省下多少时间…
  • 只设计不生产的华为二级部门“海思”,是否能与美国正面 “麒麟”这个代号真正出现是在4G时代。2014年,华为发布智能手机芯片麒麟Kirin920。这款芯片采用业界领先的8核big。LITTLE架构,支持TD LTE/LTE FDD/TD SCDMA/WCDMA/GSM共5种制式,全球率先实现LTE Cat6手机商用,支持峰值300M极速下载,性能、工艺、功耗、通信能力等各方面均达到业界领先水平。可以看出,海思的芯片与华为手机是互相成就的,这也奠定了华为手机的技术壁垒。
  • 曾打败日本电子产业,美国能否再次“压制”中国电子产业 美国对一个国家发动高科技产业的“战争”,在历史上可以借鉴的案例主要就是美日电子产业之争(20世纪80年代里根政府开始)。如果结合当时情况,与今天中美贸易战的情况相比,可以找到相似的地方,也能发现很大的区别。
  • 我国科学家发明新的单晶体管逻辑结构 这一新的逻辑架构可以通过器件级存算一体路径破解数据传输阻塞瓶颈问题,突破了现有逻辑系统中冯·诺依曼架构的限制。
  • “缺芯”当道,手机业今天的会是汽车业明天的吗? 我们是芯片需求大国,但却不是芯片设计、制造大国,所以此次输掉“芯片”大战自在意料之中。输一次不可怕,最怕的是一直输。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告