向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

能够模拟人手感知能力的电子皮肤

时间:2019-04-23 阅读:
大量独特定位的微电容器使机器手套能够感知皮肤压力和剪切力,提供类似于人手的触觉和感知能力。

开发与人手媲美的的机器手所面临的多方面挑战仍然是需要大量研究的课题。毋庸置疑,研究人员在复制人手诸多功能和特征,如某项或几项性能(抓取和操纵等)已经取得了一些进展。然而,人手是多功能的结合,如骨骼结构、肌肉力量、完全控制的关节、压力/剪切力/运动/加速度/温度感知,等等,并在很宽泛的动态范围内拥有这些属性。LUhednc

斯坦福大学(Stanford University)研究人员正在展开的工作展示了在尝试提供与人体皮肤相同感知能力所面临的挑战和进步。由化学工程师鲍哲南(Zhenan Bao)领导的团队开发目标是在手套的指尖嵌入“连续”传感器。传感器能够同时测量力的强度和方向,两个反馈因子对实现完全控制的灵活性至关重要,这是不需要经过有意识思考的人手所提供的壮举。LUhednc

在观察这款手套之前,应该先了解皮肤结构,它不仅仅是一个灵活、充满神经的保护层。外皮层布满传感器以检测压力、热量和其他刺激物;当然,手指和手掌上都是密集的触摸传感器。但是这可谓只是表层。表层之下是被称为棘层的皮肤内层,看起来像丘陵和山谷的凹凸不平的微观地带。这些突起(bump)是传感“机制”的重要组成部分。LUhednc

两层皮肤紧密结合,以整合感官信号。当手指接触皮肤表面时,皮肤外层会移动到更接近底层的棘层。轻微的触感主要来自棘层的“山顶”,当施加更大的压力时,将外皮层推入棘层的“山谷”,以引发更强烈的触感。LUhednc

虽然看起来相当简单,但是只是其中的一部分。皮肤的凹凸层能够感知更多,它揭示了压力的方向(剪切力)。当手指朝一个方向按压时,在微观山丘的另一侧会产生强烈的感知信号。感知和评估剪切力大小的能力对实现温和有力的动作(例如在拇指和食指之间保持易碎物体)而言至关重要。LUhednc

工程上的挑战是从电学角度复制皮肤功能并开发出多层手套。为了实现上述目标,研究团队采用了三层布局,由绝缘橡胶层分隔电活性顶层和底层。底层也有金字塔结构的小突起,类似于皮肤;它们共同形成具有密集感测点阵列的二维网格。纳米电容器的布局包括嵌入聚氨酯(polyurethane, PU)的碳纳米管(carbon-nanotube, CNT)顶部和底部电极;它们可以测量和区分正向力(垂直于表面)和切向(剪切)力(图1)。LUhednc

021ednc20190423LUhednc

图1 电子皮肤的制造和组装(A)—该装置由三层组成,通过层压组装:底部是厚度为1mm,带有山丘阵列的聚氨酯层(山丘直径1 mm,高度20 μm)(i);中间是厚度为10 μm的介电层,作为顶部和顶部电极之间的间隔层(ii);顶部是厚度为60 μm,带有金字塔阵列的聚氨酯层(iii)。电极由喷涂和光刻实现图案化的导电碳纳米管制成,嵌入聚氨酯基质中(电极宽度300 μm,两个电极之间的间距50 μm)。制作电子皮肤的光学图像和山丘、电极上的特写视图(插图)(B)。光学成像显示了碳纳米管-聚氨酯互连用于LCR测试仪进行信号记录,以及顶部具有模制金字塔的电子皮肤层SEM图,显示了碳纳米管-聚氨酯和聚氨酯区域(插图)(C)。LUhednc

但是这些感测点并非简单的电容器。电子皮肤的顶层包括模制的方形金字塔网格,当施加外力时,金字塔会发生弹性变形。电子皮肤的底部使用二维阵列模制山丘以模仿人体皮肤中的棘层;这些对于测量和区分施加力的方向是必不可少的。每个山丘对应25个电容器,每个电容器大小为90,000 μm2,山顶有1个电容器,斜坡有4个电容器,四个角落各有1个电容器,山丘周围有16个电容器(图2)。LUhednc

022ednc20190423LUhednc

图2 围绕山丘的不同电容器(像素)位置示意图,其中1个位于山顶,4个位于斜坡,4个位于角落,16个位于山丘周围。LUhednc

位于山丘一侧并承受较大压力的电容器电容增长幅度大于与施加力方向相反的一侧(分别为正向力、剪切力和倾斜力)(图3)。围绕山丘的电容图提供了区分几种不同类型的施加力的能力,单独的单个像素则无法提供上述信息。LUhednc

023ednc20190423LUhednc

图3 测量仿生电子皮肤的响应特性;以一个山丘为中心的5 × 5电容器传感器阵列的特点在于通过施加正向力(a)、施加剪切力(b)和施加倾斜力(c)来测量压力响应曲线。每个色带对应5%的ΔC/Cmin变化,与没有施加和施加过压力的电容相一致。LUhednc

该团队通过模拟研究了电子皮肤参数,以最大限度提高其灵敏度、信噪比(SNR)和时间响应权衡。他们使用了多种金字塔尺寸(宽度为10、20、30、40、50 μm)和分隔距离(比例b/a=0.4、0.8、1.2、1.6、2和4,其中a + b是两个金字塔中心之间的距离)。LUhednc

将手套放置在实体模型柔性手上,将它连到安装在KUKA IIWA机器人臂的雄克(Schunk)WSG 50夹具上以提供驱动。算法利用反馈回路中的感测读数来指导戴手套的机器手轻柔触摸浆果或像人手一样举起并移动一个乒乓球。这是通过使用传感器来指示剪切力,并控制戴手套的手以根据人体功能需求去调整其动作而实现的(图4)。LUhednc

024ednc20190423LUhednc

图4 传感器足够灵活,可以在不压碎一颗蓝莓的情况下,让手指拾起并抓住。LUhednc

人体皮肤的基础知识,以及电子皮肤的设计、材料、制作和应用的全部细节都发表在《Science Robotics》期刊上,一篇非常易读且内容丰富的论文中,论文题目为“A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics”,包括其补充信息。LUhednc

此项研究工作中的一部分得到了瑞士国家科学基金会(Swiss National Science Foundation)、欧洲委员会(the European Commission)、美国国家科学基金会(National Science Foundation)和斯坦福纳米共享设施(Stanford Nano Shared Facilities)的支持。LUhednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 360度全景环视和自动泊车系统 基础环视系统为驾驶员提供可视化提示,从而让他们更加全面地了解周围环境。通过深度学习汽车摄像头捕获的视频图像,可提供更高级的服务,如检测空的停车位、自动泊车和启用无人驾驶的“自动代客泊车”功能。 
  • 三星的“野心”远不止一亿像素 在手机拍照功能上,今年三星和小米的一亿像素可谓是赚足了眼球。今年年初三星发布了最新的S20系列,其中定位旗舰的S20 Ultra配备了一亿像素的传感器,此外,小米新发布的小米10和小米10Pro也都用上了一亿像素的传感器,更是帮助小米夺得了DXO第一名。不过,三星的“野心”可远不止是一亿像素。
  • 先进的医疗监测设备:高性能、低功耗 与基于夹子的替代产品相比,这款新设备体积小,佩戴舒适且更适合长时间佩戴。但是不要误会:体积小仍然具有强大的功能。
  • 为什么AIoT是持续技术创新的必备要素 尽管AIoT的概念相对较新,但是了解在不久的将来它将如何改变我们的日常生活是很重要的。以下是我们期望看到的与AIoT相关的一些机会。
  • 基于 MEMS 的“硅芯片声纳”超声波ToF传感器扩大了感 CH-101是首款实现商用的基于MEMS的超声波ToF传感器,主要应用于消费电子、AR/VR、机器人、无人机、物联网(IoT)、汽车和工业市场领域。
  • 创建一个集成且不显眼的糖尿病管理系统 由于这些仪器通常在皮下测量间质液,直到最近,还需要定期校准血液,即需要老派的戳手指。然而,随着技术的进步,一些CGM现在无需对全血进行校准。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告