向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

合成电路内的可变电阻、电感和电容

时间:2019-05-16 作者:Stephen Woodward 阅读:
虽然最初人们认为米勒效应只不过是会限制带宽和稳定性的不想要的寄生电容倍增器,但它现在已被有用的拓扑所采纳,如模拟示波器时基积分器。根据这样一个事实:如果放大器增益(A)可变,那么米勒阻抗(Zm)或电纳(Ym)也变,本设计实例提出了另一种使用它的好办法。

一个世纪前提出的米勒效应使电压放大器的输入和输出之间连接的阻抗反映在放大器输入阻抗中,与放大器增益成比例缩放。虽然最初人们认为它只不过是会限制带宽和稳定性的不想要的寄生电容倍增器,但米勒效应已被有用的拓扑结构所采纳,如模拟示波器时基积分器。

根据这样一个事实:如果放大器增益(A)可变,那么米勒阻抗(Zm)或电纳(Ym)也可变,本设计实例提出了另一种使用它的好办法。

Zm = Z/(1–A)
Ym = Y(1 – A)

我们可以看到一个有趣的结果,使增益因子A包括A=+1,因此(1-A)=(1-1)=0,这导致了Zm(即Lm或Rm)理论上可至无穷大,而Ym(Cm)为零。

DI5-F1-201905.jpg
图1:反馈阻抗的可变增益米勒效应缩放。

图2中提出了米勒效应元件合成电路的一种实现方法。

DI5-F2-201905.jpg
图2:可变增益米勒电路示例。

增益设定电位器(如简单的模拟微调器、带计数转盘的精密电位器或图示的数字电位器)的选择是根据应用需求而定的。A1和A2的选择需适应所需的带宽、电压规格和电流驱动能力,而R2/R1比率确定增益调节范围:(+1至-R2/R1)。以图2给定的元件为例(10位分辨率AD5292-20数字电位器),R1=R2,Yref=0.5µF参考电容,跳线J1接地,Ym可以以大约1nF(实际为977pF)每步、总共1k步,从大约为0(几个pF)合成到1.0µF:

Cm = 0.5µF(D/1024)(2)
0 ≤ D ≤ 1023

由此产生的电路可用于原型设计、测试、后期微调、调整和校准。

但是,这里存在一个明显的局限。合成电抗只有一个有源端子,另一端间接接地。这在许多潜在的应用中都存在问题。当需要两个端子时,也存在一种解决方案,如图3所示。

DI5-F3-201905.jpg
图3:单端子和双端子拓扑图。

这种解决方案是将两个相同的米勒电路(包含相同的参考电抗和电位器设定值)连到两个端子,并通过J1/J2交叉连接,然后利用合成电抗上出现的差分信号。两个电路中的米勒增益放大器减去出现在对端的信号,从而在两个端子间有效合成一个浮置元件。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接:Synthesize variable in-circuit Rs, Ls, and Cs

本文为《电子技术设计》2019年5月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Stephen Woodward
W .Stephen Woodward是仪表、传感器和计量学自由顾问,是EDN设计实例栏目最高产且最富创意的作者之一。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 一文读懂如何为开关电源选择合适的电感 什么是电感?电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。
  • 基本运算放大器配置 在本实验中,我们将介绍一种有源电路——运算放大器(op amp),其某些特性(高输入电阻、低输出电阻和大差分增益)使它成为近乎理想的放大器,并且是很多电路应用中的有用构建模块。在本实验中,你将了解有源电路的直流偏置,并探索若干基本功能运算放大器电路。我们还将利用此实验继续发展使用实验室硬件的技能。
  • 汽车电子设计中正确用Pspice做WCCA分析的设计要点 上篇文章讲述了在汽车电子设计中正确用Pspice做蒙特卡洛分析的设计要点,本文是它的姊妹篇,将会讲述用Pspice做最差电路分析(WCCA)的设计要点。
  • 汽车电子设计中正确用Pspice做蒙特卡洛分析的设计要点 Pspice程序功能强大,但如果其设置不正确,得到的运行结果可能不是真正的输出,从而对软件产生质疑。尤其是在汽车电子的设计中,需要做到多种分析并考虑更复杂的一些参数添加。正确使用Pspice来设计和仿真电路需要遵循一定的规则,否则得到的仿真结果并非真正的“最差”,从而会导致设计结果出错。
  • 运算放大器的奥秘 运算放大器无处不在,它源于模拟计算机时代,有着悠久的历史,现在已经成为模拟电子领域的标志性产品。为什么运算放大器如此受欢迎?未来哪些产品可能取代运算放大器?
  • 一种直接测量运算放大器输入差分电容的方法 运算放大器的输入电容和反馈电阻在放大器的响应中产生一个极点,从而影响稳定性并增加较高频率下的噪声增益。因此,稳定性和相位裕量可能会降低,输出噪声可能会增加。实际上,以前的一些差模电容测量技术依据的是高阻抗反相电路、稳定性分析以及噪声分析。这些方法可能会非常繁琐。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告