广告

经典架构新玩法:用单端仪表放大器实现全差分输出

时间:2019-05-13 作者:Rusty Juszkiewicz,ADI公司 阅读:
在交叉连接电路中,输出的共模不会受电阻对失配的影响,因此始终都能实现真正的差分输出。而且,差分信号衰减是可能存在的,这就消除了采用漏斗放大器的必要性。最后,输出的极性由增益电阻的位置决定,从而为用户增加了更多的灵活性。

问:我们可以使用仪表放大器生成差分输出信号吗?

答:随着对精度要求的不断提高,全差分信号链元件因出色的性能脱颖而出,而且其噪声抑制的主要优点可以被信号路由所利用。由于输出会拾取这种噪声,因此经常会出现误差并在信号链中进一步衰减。此外,差分信号的范围可以达到同一电源上单端信号的两倍。因此,全差分信号的信噪比(SNR)更高。传统的三运放仪表放大器有许多优点,包括共模信号抑制、高输入阻抗,以及精确(可调)的增益。但在需要全差分输出信号时,它就无能为力了。人们已经使用一些方法,用标准元件实现全差分仪表放大器。但它们有着各自的缺点。

DI6-F1-201905.jpg
图1:传统的仪表放大器。

一种技术是使用运算放大器驱动参考引脚,正输入为共模,负输入为将输出连接在一起的两个匹配电阻的中心。该配置使用仪表放大器输出作为正输出,运算放大器输出作为负输出。由于两个输出是不同的放大器,因此这些放大器之间动态性能的失配会极大地影响电路的整体性能。此外,两个电阻的匹配使输出共模随输出信号移动,可能导致失真。在该电路的设计中,选择放大器时必须考虑稳定性,并且运算放大器上可能需要一个反馈电容,用于限制电路的总带宽。最后,该电路的增益范围取决于仪表放大器。因此,不可能实现小于1的增益。

DI6-F2-201905.jpg

图2:使用外部运算放大器产生反相输出。

另一种技术是将两个仪表放大器与所交换的输入并联。与前一个电路相比,这种配置具有更好的匹配驱动电路和频率响应,但它不能实现小于2的增益。该电路还需要精密的匹配增益电阻,以获得纯差分信号。与先前的架构一样,这些电阻的失配会导致输出共模电平变化。

DI6-F3-201905.jpg
图3:使用第二仪表放大器产生反相输出。

这两种方法在实现增益及匹配元件的要求方面存在限制。

新型交叉连接技术

如图4所示,通过交叉连接两个仪表放大器并使用单个增益电阻,这种新电路可提供具有精密增益或衰减的全差分输出。通过将两个参考引脚连接在一起,用户可以根据需要调整输出共模。

DI6-F4-201905.jpg
图4:交叉连接技术——产生差分仪表放大器输出的解决方案。

In_A的增益由以下等式推出。由于输入电压出现在仪表放大器2的输入缓冲器的正端子上,而电阻R2和R3另一端的电压为0V,因此这些缓冲器的增益遵循同相运算放大器配置公式。同样,对于仪表放大器1的输入缓冲器,增益遵循反相运算放大器配置。由于差分放大器中的所有电阻都匹配,因此缓冲器输出的增益为1。

DI6-F5-201905.jpg
图5:仪表放大器内部的匹配电阻是交叉连接技术的关键。

DI6-E1-201905.jpg

根据对称性原则,如果在In_B施加电压V2且In_A接地,则结果如下:

DI6-E2-201905.jpg

将这两个结果相加得到电路的增益。

DI6-E3-201905.jpg

增益电阻R3和R2设定电路的增益,并且只需要一个电阻来实现全差分信号。正/负输出取决于安装的电阻。不安装R3将导致增益公式中的第二项为零。由此可得,增益为2×R1/R2。不安装R2会导致增益公式中的第一项为零。由此可得,增益为-2×R1/R3。需要注意的是增益纯粹是一个比率,因此可以实现小于1的增益。请记住,由于R2和R3对增益有相反的影响,所以,使用两个增益电阻会使第一级增益高于输出增益。如果在选择电阻值时不小心,会加大第一级运算放大器在输出端引起的偏差。

为了演示这个电路的实际运用情况,我们把两个AD8221仪表放大器连接起来。数据手册列出R1为24.7kΩ,因此当R2为49.4kΩ时,可实现等于1的增益。

CH1是In_A的输入信号,CH2是VOUT_A,CH3是VOUT_B。输出A和B匹配且反相,差值在幅度上等于输入信号。

DI6-F6-201905.jpg
图6:使用交叉连接技术产生差分仪表放大器输出信号,增益=1时的测量结果。

接下来,将49.4kΩ增益电阻从R2移至R3,电路的新增益为-1。现在Out_A与输入反相,输出之间的差值在幅度上等于输入信号。

DI6-F7-201905.jpg
图7:使用交叉连接技术产生差分仪表放大器输出信号,增益=-1时的测量结果。

如前所述,其它技术的一个限制是无法实现衰减。根据增益公式,使用R2=98.8kΩ,电路会使输入信号衰减两倍。

DI6-F8-201905.jpg
图8:使用交叉连接技术产生差分仪表放大器输出信号,增益=1/2时的测量结果。

最后,为了显示高增益,选择R2=494Ω以实现G=100。

DI6-F9-201905.jpg
图9:使用交叉连接技术产生差分仪表放大器输出信号,增益=100时的测量结果。

该电路的性能表现符合增益公式的描述。为了获得最佳性能,使用此电路时应采取一些预防措施。增益电阻的精度和漂移会增加仪表放大器的增益误差,因此要根据误差要求选择合适的容差。由于仪表放大器Rg引脚上的电容可能导致较差的频率性能,因此如果需要高频性能,应注意这些节点。此外,两个仪表放大器之间的温度失配会因失调漂移导致系统失调,因此在布局和加载方面要小心。使用双通道仪表放大器,如AD8222,有助于克服这些潜在的问题。

结论

交叉连接技术可保持仪表放大器所需特性,同时提供附加功能。尽管本文讨论的所有示例都实现了差分输出,但在交叉连接电路中,输出的共模不会受电阻对失配的影响,与其它架构不同。因此,始终都能实现真正的差分输出。而且,如增益公式所示,差分信号衰减是可能存在的,这样就不必采用漏斗放大器,而从前这是必不可少的。最后,输出的极性由增益电阻的位置决定(使用R2或R3),为用户增加了更多的灵活性。

(原文刊登于ASPENCORE旗下Planet Analog网站,参考链接:A New Spin on a Classic Architecture: Achieving a Fully Differential Output Using Single-Ended Instrumentation Amplifiers

本文为《电子技术设计》2019年5月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • Middlebrook和Rosenstark的环路增益测量 测量负反馈电路环路增益T的两种常用方法是Middlebrook的双注入法和Rosenstark的开路/短路法。两种方法都适用于计算机仿真和在工作台上进行人工测试。本文指出了这两种方法的相似性、差异性和独特性,以免将它们混淆。
  • 合成电路内的可变电阻、电感和电容 虽然最初人们认为米勒效应只不过是会限制带宽和稳定性的不想要的寄生电容倍增器,但它现在已被有用的拓扑所采纳,如模拟示波器时基积分器。根据这样一个事实:如果放大器增益(A)可变,那么米勒阻抗(Zm)或电纳(Ym)也变,本设计实例提出了另一种使用它的好办法。
  • 蒙特卡罗出错了 工程师们进行蒙特卡罗分析并评估其结果的方式有可能是不正确的,错误理解蒙特卡罗分析结果可能导致不正确的技术和商业决策。在电路蒙特卡罗分析中,分析人员设定了会影响结果的每个元件特性的概率,并运行多电路仿真来找出给定函数的各种可能的结果。
  • 2019年中国最需要的十款创新国产IC 5月10日,一年一度的“松山湖中国IC创新高峰论坛”再次盛大举行。松山湖IC论坛已迈进第九个年头,2019年中国最需要的十款创新国产IC有哪些?
  • 更深一步了解,电容是起什么作用的? 电容决定式是:C=εS/4πkd,定义式是:C=Q/U,还有有一个它的特性隔直通交, 这也是大多数人对电容的理解吧,虽然知道电容是什么,但是具体起什么作用很少人能清楚。直到工作之后,做了几个电子研发的项目,才对电容的作用有了更深一步的了解。
  • 三种3D成像技术对比告诉你:移动设备人脸识别技术怎么选 3D人脸识别是智能手机、AR/VR等移动设备发展的一大趋势,并将在工业、汽车等各领域渐渐普及。这其中涉及的关键技术就是3D成像。目前市场上的主流技术有三种,技术指标、成本和系统要求等各不相同。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告