广告

OPPO首次实现了屏下摄像头,从其专利窥其设计难点

2019-06-03 网络整理 阅读:
OPPO首次实现了屏下摄像头,从其专利窥其设计难点
智能手机发展到2019年,前置摄像头已经成为影响手机正面形态的最重要因素,甚至说是唯一也不过分。把前置摄像头放在屏下,是我们登顶“珠峰”之前的最后一道难关,只有解决了这一技术难题,才能实现真正的“未来手机”。

你心目中最理想的智能手机正面形态是什么样的?3cSednc

升降摄像头?刘海屏?水滴屏?抑或是挖孔屏?3cSednc

这四个形容手机外观的词,都精准描述了前置摄像头在手机中的位置。智能手机发展到2019年,前置摄像头已经成为影响手机正面形态的最重要因素,甚至说是唯一也不过分。3cSednc

把前置摄像头放在屏下,是我们登顶“珠峰”之前的最后一道难关,只有解决了这一技术难题,才能实现真正的“未来手机”。3cSednc

从OPPO N1到Find X,再到 Reno,对于前置摄像头最有想法的OPPO在今天宣布,首次实现了屏下摄像头。3cSednc

006ednc201906033cSednc

据了解,OPPO已经在2018年6月申请了屏下摄像头的相关专利。3cSednc

007ednc201906033cSednc

2018年6月4日,OPPO申请了“电子设备、图像处理方法和装置”的发明专利3cSednc

008ednc201906033cSednc

2018年6月4日,OPPO申请了“图像处理模块、摄像头和电子设备”的实用新型专利3cSednc

009ednc201906033cSednc

OPPO屏下摄像头设计3cSednc

010ednc201906033cSednc

OPPO屏下摄像头自拍演示3cSednc

没有机械结构,没有物理升降,前置摄像头透过屏幕,“看”到了手机上方的画面。3cSednc

在手机正面,你很难肉眼分辨出出屏下摄像头的位置。3cSednc

011ednc201906033cSednc

3cSednc

 OPPO屏下摄像头3cSednc

为了找出屏下摄像头的“藏身之处”,我们把手指贴近手机屏幕,发现它就藏在屏幕上半部分居中的位置。3cSednc

012ednc201906033cSednc

OPPO屏下摄像头位置3cSednc

这台工程机,小编和同事在产品经理那里把玩了一下午,一致得出结论:这就是未来手机该有的样子!3cSednc

屏下摄像头技术的难点究竟在哪儿?

其实屏下拍照早已不是什么新技术,因为光电式屏下指纹的工作原理,本来就是通过在屏幕下方放置镜头和图像传感器:在手指按压到屏幕上时,由屏幕发出强光“照亮”指纹再由下方的摄像头拍摄反射的指纹图案,最后通过算法增强、图像对比,完成指纹识别。没错,你可能正在使用的小米9、OPPO Reno、vivo X27、华为P30等等手机已自带屏下摄像头。3cSednc

既然可以实现屏下拍摄指纹,为什么不能自拍呢?3cSednc

虽然都是在屏幕下方放置摄像头,但“屏下指纹”和“屏下自拍”还是有很大区别的。最明显之处就在于,屏下指纹是需要屏幕亮起、照亮指纹之后再用隐藏在屏下的传感器去“拍”指纹的反光,而且拍到的是黑白影像,对画质要求很低。3cSednc

013ednc201906033cSednc

自拍当然就不同了,对摄像头像素、镜片、光圈等的要求都高得多,传统摄像头都放置在高透光率的保护玻璃后,而在“屏下自拍”设计中,就算屏幕像素可以变成透明,它们的透光率也要远低于光学玻璃,而且屏幕上每个像素之间的晶格、电路,也会在摄像头前方形成阻碍。3cSednc

要想去除屏幕晶格、电路的影响,靠光学设计是做不到的,只能通过后期算法“滤”掉,并进行补色修复,事实上现有的AI技术完全可以胜任这部分工作,前提是对屏幕的微观结构非常熟稔。3cSednc

但是屏幕透光率依然是横亘在屏下摄像头的最大障碍。理论上,利用OLED面板透明、每个像素点可独立控制开关的特性,当其发光的时候,看上去是没有缺口的,因为那一部分像素点并没有被阉割掉。要自拍的时候,只需要将摄像头部分的几个像素点熄灭,这样屏幕下方的前置摄像头就露出来了。3cSednc

原理看起来简单,但放到实际应用上,远没有那么容易。虽然OLED面板可以是“透明”的,但是相较于光学玻璃来说,它的透光率远远达不到要求。目前的OLED面板的透光率仍然限制在50%以内,一般只能达到41%~47%左右,因而屏下摄像头的究极形态一时半会儿还出不来。3cSednc

挖孔屏是伪“屏下摄像头”,真正屏下摄像头来了?

挖孔屏是去年末出现的新解决方案,刚出来时也被称为屏下摄像头,不过无论是三星A8s的通孔亦或是华为Nova4、荣耀V20的盲孔,都破坏了屏幕显示,形成了一个“黑洞”,华为系破坏的是LCD的背光层,且对液晶层进行了特殊处理来增加透光率,三星则直接打穿了背光层和液晶面板,只留下玻璃盖板。3cSednc

014ednc201906033cSednc

而屏下摄像头技术最明显的一点便是:摄像头非工作状态下不影响屏幕成像。显然,目前的挖孔屏手机都不能称之为真正的屏下摄像头手机,顶多叫玻璃盖板下摄像头,相对于刘海屏、水滴屏来说,虽然屏幕形态有很大变化,但仍属异形屏阵容。3cSednc

同时三星A8s、华为Nova4、荣耀V20都不约而同的用了LCD屏,由于厚度和其他因素,传统的LCD屏透光率还远不及OLED屏。要说更为接近的,无疑是三星最新的Galaxy S10系列,在柔性AMOLED显示屏的挖孔工艺上实现了突破,其超感官全视屏采用精确的激光切割工艺进行Infinity-O屏内挖孔设计,其中S10和S10e为单开孔(前置单镜头)、S10+为双开孔(前置双镜头)。3cSednc

015ednc201906033cSednc

在早前的开发者大会上,三星宣布了Infinity-U、Infinity-V、Infinity-O和New Infinity四种屏幕设计方案。Infinity-U和Inifinity-V这两种方案是早早就已经实现了,Infinity-O和New Infinity便是目前各大手机厂商所努力的方向,尤其是后者。而今天OPPO展示就是最后一种。3cSednc

016ednc201906033cSednc

不难看出,要想真正通过屏下摄像头这种新设计来实现100%真全面屏,厂商必须在屏幕和摄像头方面都具有足够强的研发能力,至少要有对上游供应链的控制力以及相应的AI算法实力等。3cSednc

另一个重要的问题便是OPPO何时能够将屏下摄像头成功量产并在正式产品中推出,根据此前曝光的相关专利,需要让光线透过屏幕传入摄像头来使其正常工作,这必然加大了屏幕和整个手机的制造难度。OPPO能否成功带来世界上首款屏下摄像头手机?我们拭目以待。3cSednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 苹果AirTag猜想:会不会成为我们随身的电子“便利贴”? 今年的苹果,围绕着iPhone、MacBook及周边外设产品的发布非常频繁,AirPods/Pro, AirPods Studio,MagSafe等等均已热销,此前频传的AirTag在11月11日的苹果M1及笔记本发布会上,依然没有看到踪影,但是关于AirTag产品的细节却越来多,今天我们来猜想:苹果这个看似随意之作的AirTag会是什么?……
  • STM32 L5,构筑IoT(物联网)时代的安全防火墙 IoT(Internet of Things,IoT)物联网概念的提出是在1999年,起源于传媒领域,是信息科技产业的第三次革命。虽然物联网发展了这么多年,但是直到5G,才真正迎来爆发的时机。由于5G是真正具有超大容量的无线通信系统,结合芯片技术的发展,给了很多通信终端和嵌入式系统等万物互联的可能。在PC爆发的时代,我们曾经遭遇了泛滥的网络病毒和黑客攻击的威胁,于是孕育了杀毒软件和防火墙的需求,那么在5G及以后的大规模物联网时代,会不会出现同样的安全危机?又怎样在芯片层面去提前预防、解决这些安全问题。
  • iPhone 12 Pro 激光雷达LiDAR真实评测:快速3D扫描建模 iPhone 12 Pro自发布以来,其搭载的激光雷达LiDAR的作用已经进行了一波科普,不过却一直缺乏实际的应用体验,现在到手的用户多了,各个社区开始通过实际使用来体验LiDAR的应用。那么,这种应用有什么用呢,仅仅是出于消费者的娱乐还是将会对某些领域/产业带来深刻的影响和变革,又或者可能对未来有什么展望呢?本文通过实际应用图片与视频的体验来给我们打开一扇激光雷达在消费领域的应用之窗,透过这扇窗户也可能看到未来的下一代智慧终端的身影......
  • 通嘉LD5537B1之Flyback副边回授控制器应用于TV及Monit 显示器电源背景应用,通嘉LD5537B1特点,Layout 注意事项
  • Secure Thingz CEO:物联网有风险,入行需“安全” 对于绝大多数人而言,当今物联网面临的最大挑战是安全性。根据英国DCMS的数据,超过45%的受访者表示,安全性正在阻碍物联网的普及。根据其他分析,如果安全性更好,超过70%的客户会增加物联网产品的购买量。而现实是,目前只有4%的物联网设备具有足够的安全性来满足当今的基本要求,同时全球有超过350万个网络安全职位空缺……
  • 如何建立基于MEMS的解决方案,以在状态监控期间实施振动 对于使用电机、发电机和齿轮等的机械设备和技术系统,状态监控是当前的核心挑战之一。在最大限度降低生产停机风险这一方面,计划性维护的重要性日益凸显,不仅是在工业领域,在任何
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了