向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

小心RTV爆炸酿祸!

时间:2019-07-01 作者:John Dunn 阅读:
日前在美国伊利诺伊州Waukegan一座化学工厂发生爆炸的新闻,让我想起一个有关高压(100kV)电源的意外...

在不久前的一个星期天早上,我在网络上读到一篇标题为「Waukegan化学工厂爆炸酿2死2失踪」(2 dead, 2 still missing after Waukegan chemical plant explosion)的新闻。这是一起发生在美国伊利诺伊州(Illinois)一家AB Specialty Silicones公司遭遇的重大工厂爆炸事件。1Idednc

这让我想到了一个有关高压(100kV)电源的意外。这种高压电源使用一种特殊的室温硫化型硅橡胶(room temperature vulcanized silicone rubber;RTV),作为高压灌封材料。1Idednc

001ednc201907011Idednc

该高压组件是在铝制底盘内部建构的,而组装中的RTV在开始使用之前需要时间来固化。经过许多天当RTV显然应该已经凝固后,我们随即展开高压测试。然而它却未能正常操作,而是在机箱内部发生了爆炸,所幸并未穿透该机箱仅1/8吋的厚度,但却导致墙面向外推移了大约半英吋。感谢老天,没有人受伤。1Idednc

后来我们发现,某种使用过的RTV在其固化过程中会散发出酒精蒸气。其他RTV产品则会散发无害的水蒸气,但这种产品并非完全无害。当高压组件通电后,随即导致酒精蒸汽爆炸。1Idednc

后来的补救措施是设置一个类似热带鱼缸中用于充气的气泵,以便让下一个高压组件的内部保持通风,且至少持续一周使其明显地实现RTV固化和凝固。1Idednc

因此,后来就未曾再发生爆炸了。1Idednc

我不知道Waukegan这座化学工厂的爆炸意外是否也有类似原因,但如果您正在处理这一类的产品,请格外小心其蒸汽。1Idednc

(原文发表于ASPENCORE旗下EDN美国版,参考链接:Beware explosive RTV,编译:Susan Hong)1Idednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
John Dunn
John Dunn是资深电子顾问,毕业于布鲁克林理工学院(BSEE)和纽约大学(MSEE)。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 比较器——振荡来自何处? 比较器是一个简单的概念-在输入端对两个电压进行比较。输出为高或者低。因此,在转换的过程中为什么存在振荡?
  • PCB 布局技巧:带条纹的电容 电容一端的条纹代表什么?我发现现在很少有工程师知道电容一端的条纹代表什么,也不知道条纹端和不带条纹端互换带来的不同效果。
  • 电阻噪声的基础知识和一个有趣的小测试 放大电路的噪声性能受到输入电阻和反馈电阻Johnson噪声(热噪声)的影响。大多数人似乎都知道电阻会带来噪声,但对于电阻产生噪声的细节却是一头雾水。
  • 比亚迪刀片电池技术真的能与三元电池相抗衡吗? 其基于刀片电池+磷酸铁锂化学体系能达到的电芯级与电池包级的能量密度,以及其与目前典型的三元电池包的对比。不难看出,基于刀片电池技术,磷酸铁锂电池系统完全可以在能量密度上与现在市面上主流的三元电池相匹敌……
  • 对电池供电设备提供保护的极性校正电路 早前概述的一种极性保护电路,可以将电池正确连接到负载,而不论电池在其底座中的方向如何。这个电路可以工作,但存在一些缺点。它的电源电压范围有一定的局限(1.8~5.5V),并且内部电阻略高,因此只能用于电流负荷不超过30mA的产品。幸运的是,由于MOSFET技术的一些重大进步,现在可以克服这些局限。
  • 运放噪声——同相放大电路 对于低噪声应用来讲,同相放大电路是最常见的,因此我们将主要探讨同相运算放大器。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告