广告

有效回波损耗到底是什么?(第1部分)

2019-07-02 09:58:06 Ransom Stephens 阅读:
还记得振铃吗?也就是由反射引起的、会影响信号质量的振荡?想当年我们可以假设信号在芯片之间传输是瞬时完成的,在那时,这个问题可以通过阻抗匹配,或等待它们稳定下来来解决。但现在……

还记得振铃吗?也就是由反射引起的、会影响信号质量的振荡?想当年我们可以假设信号在芯片之间传输是瞬时完成的,在那时,这个问题可以通过阻抗匹配(在MHz频率时也不是个什么大问题),或等待它们稳定下来来解决(图1)。NBdednc

effectivereturnloss-1.pngNBdednc

图1:反射在上升沿处产生振铃。NBdednc

我也不记得那些日子了。毫无疑问,光的速度有限。那时和现在的区别在于,无论是非归零(NRZ)还是四电平脉冲幅度调制(PAM4)信号,它从发射器传输到接收器,然后从接收器反射回发射器,然后又从发射器反射到接收器所花的时间,远小于码元的单位时间间隔(UI)。NBdednc

在电子工程术语中,发射器到接收器的通路是传输线,它和电容器、电感器或电阻器一样,都是基本的网络元件。56Gbaud信号的UI小于20ps,即在典型的PCB中相当于约3mm长。任何超过几厘米长的通道都可以作为此信号的传输线。NBdednc

可以这样想:发射器和接收器引脚上的阻抗不匹配,以及它们之间的连接器、过孔和其他不连续会引起反射。如果发射器和接收器之间的距离是1英寸(即2.54cm),则对于56Gbaud信号,它们之间的群延迟约为8.5个UI。码元会在接收器处发生反射,经历8.5个UI传回到发射器,然后又会经历下一次反射,经过8.5个UI传送到接收器。由于往返时间是17个UI,因此初始码元在经历17个UI传输后,会因反射而发生衰减。采用17抽头判决反馈均衡(DFE),则可以在码元进入解码器/限幅器之前很好地整理这些反射。NBdednc

由于有插入损耗以及任何反射都不会完全,因此后续反射的振幅会越来越小。NBdednc

RL(f)(回波损耗,与频率呈函数关系)和IL(f)(插入损耗)分别由差分散射参数Sdd22和Sdd21所给定。Sdd22用来衡量总反射信号能量。S参数掩模已使用多年,用来指定最大允许的RL(f)和IL(f),但它们没有考虑均衡的影响(图2)。NBdednc

effectivereturnloss-2.jpgNBdednc

图2. PAM4 28Gbaud典型应用所用(a)RL(f)和(b)IL(f)掩模。图片由Ransom的笔记提供。NBdednc

下面来看有效回波损耗(ERL),这个数量是由Samtec公司的杰出工程师Rich Mellitz在802.3cd(50/100/200/400千兆以太网)中所提出。ERL以与信道工作裕量(COM)类似的方式,将回波损耗与均衡效应(尤其是DFE),以及发射器噪声和接收器频率响应合并到了与信噪比类似的品质因数中。NBdednc

与COM类似,ERL做了两件事:(1)它提供了灵活的设计参数空间,工程师可以利用它来优化整体系统设计,因此可以用不同的设计元素适应不同的信号损伤,同时确保合规元件能够进行互操作;(2)它把简单易懂的测量方法和要求转化成了非常复杂的品质因数——要想理解这是什么,就得阅读本文的第2部分NBdednc

原文链接为《What’s effective return loss, anyway? (Part 1)》,由赵明灿编译。NBdednc

NBdednc

NBdednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 回波损耗是正的么?RL=-20lg|S11|
Ransom Stephens
暂无简介...
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 俄罗斯要绕过5G直接开发6G!投资300亿卢布够吗? 在全球通信技术竞争上,中国的5G发展速度遥遥领先于其他国家,更多国家开始在6G上较劲儿。今日,“俄罗斯决定绕过5G直接开发6G网络”登上热榜,引起网友热议。
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • Matter智能家居应用上路 无线连接是智能家居应用和Matter规范的核心。为了符合Matter标准,业界芯片供货商正通过集成802.15.4或扩展其无线产品组合,以单芯片支持多种无线协议的实力推动智能家居应用的Matter转型…
  • 一种简单的PCB加温电路设计 加温电路的主要目的是为了在低温时,电路发挥作用为PCB板进行加热保温使其温度可以保持在器件可运行的最低温度以上,所以并不需要对温度进行精确的控制。因此制定以下方案,使用电阻与NTC温敏电阻进行分压,对一只MOS管或三极管进行控制。当温度低到一定阈值时,电阻与NTC电阻分压升高,打开加温电路,当温度回升后分压下降,降电路关闭。
  • 模拟信号是怎么转换成数字信号的? 带宽有限(band-limited) 采样频率大于2倍信号最高频率后可以无失真的恢复出原始信号。实际中,信号往往是无线带宽的,如何保证带宽有限?所以,我们在模拟信号输入端要加一个低通滤波器,使信号变成带宽有限,再使用2.5~3倍的最高信号频率进行采样。关于此我们下面将模拟数字转换过程将会看到。
  • AIoT生态发展大会智慧两轮车分论坛圆桌讨论:智慧两轮车 在AspenCore举办的“2022国际AIoT生态发展大会”上,“智慧两轮车分论坛”的圆桌讨论环节邀请到全志科技、威灵电机、发掘科技、台铃科技和灵动微电子五家两轮车市场的芯片商、方案商、系统商和整车厂,围绕“智慧两轮车市场如何弯道超车?”的主题展开了讨论。
  • 智能化、联网化趋势下,传统电动自行车企业如何价值再造 随着绿色低碳意识的提升,以及外卖与快递行业的发展,近年来电动自动车的产量及销量大幅增长。但与此同时,电动自行车的安全问题也引起全社会的关注。数据显示,2021年1-10月器期间,电动自行车电池故障引发的火灾1.4万起,包含多起人身伤亡事故,在政府的重视下,中国质量认证中心发布了智能电动车认证技术规范,希望能够用技术手段,用物联网手段降低电池的安全相关事故,能够提高电动自行车在电池和整车的安全性。电动自行车的智能化、联网化已成为刚需。
  • 美的威灵电机:两轮车电动力系统技术发展趋势与解决方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,广东威灵电机制造有限公司两轮车项目经理刘海量分享了“两轮车电动力系统技术发展趋势与解决方案”主题演讲。
  • 发掘科技:V2X场景中的两轮车方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,发掘科技战略发展总监屈博发表了“V2X场景中的两轮车方案”主题演讲。
  • 电动两轮车需要什么样的MCU方案? 电机控制器作为智慧电动两轮车的“控制中心”,操控着车辆的加速、定速巡航、能量回收。在6月29日全球领先的专业电子机构媒体AspenCore和深圳市新一代信息通信产业集群联合主办的“2022国际AIoT生态发展大会-智慧两轮车分论坛”上,专注于MCU研发和生产的灵动微电子,分享了智慧两轮车需要什么样的电机驱动芯片。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了