向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

有效回波损耗到底是什么?(第1部分)

时间:2019-07-02 作者:Ransom Stephens 阅读:
还记得振铃吗?也就是由反射引起的、会影响信号质量的振荡?想当年我们可以假设信号在芯片之间传输是瞬时完成的,在那时,这个问题可以通过阻抗匹配,或等待它们稳定下来来解决。但现在……

还记得振铃吗?也就是由反射引起的、会影响信号质量的振荡?想当年我们可以假设信号在芯片之间传输是瞬时完成的,在那时,这个问题可以通过阻抗匹配(在MHz频率时也不是个什么大问题),或等待它们稳定下来来解决(图1)。RM9ednc

effectivereturnloss-1.pngRM9ednc

图1:反射在上升沿处产生振铃。RM9ednc

我也不记得那些日子了。毫无疑问,光的速度有限。那时和现在的区别在于,无论是非归零(NRZ)还是四电平脉冲幅度调制(PAM4)信号,它从发射器传输到接收器,然后从接收器反射回发射器,然后又从发射器反射到接收器所花的时间,远小于码元的单位时间间隔(UI)。RM9ednc

在电子工程术语中,发射器到接收器的通路是传输线,它和电容器、电感器或电阻器一样,都是基本的网络元件。56Gbaud信号的UI小于20ps,即在典型的pcb中相当于约3mm长。任何超过几厘米长的通道都可以作为此信号的传输线。RM9ednc

可以这样想:发射器和接收器引脚上的阻抗不匹配,以及它们之间的连接器、过孔和其他不连续会引起反射。如果发射器和接收器之间的距离是1英寸(即2.54cm),则对于56Gbaud信号,它们之间的群延迟约为8.5个UI。码元会在接收器处发生反射,经历8.5个UI传回到发射器,然后又会经历下一次反射,经过8.5个UI传送到接收器。由于往返时间是17个UI,因此初始码元在经历17个UI传输后,会因反射而发生衰减。采用17抽头判决反馈均衡(DFE),则可以在码元进入解码器/限幅器之前很好地整理这些反射。RM9ednc

由于有插入损耗以及任何反射都不会完全,因此后续反射的振幅会越来越小。RM9ednc

RL(f)(回波损耗,与频率呈函数关系)和IL(f)(插入损耗)分别由差分散射参数Sdd22和Sdd21所给定。Sdd22用来衡量总反射信号能量。S参数掩模已使用多年,用来指定最大允许的RL(f)和IL(f),但它们没有考虑均衡的影响(图2)。RM9ednc

effectivereturnloss-2.jpgRM9ednc

图2. PAM4 28Gbaud典型应用所用(a)RL(f)和(b)IL(f)掩模。图片由Ransom的笔记提供。RM9ednc

下面来看有效回波损耗(ERL),这个数量是由Samtec公司的杰出工程师Rich Mellitz在802.3cd(50/100/200/400千兆以太网)中所提出。ERL以与信道工作裕量(COM)类似的方式,将回波损耗与均衡效应(尤其是DFE),以及发射器噪声和接收器频率响应合并到了与信噪比类似的品质因数中。RM9ednc

与COM类似,ERL做了两件事:(1)它提供了灵活的设计参数空间,工程师可以利用它来优化整体系统设计,因此可以用不同的设计元素适应不同的信号损伤,同时确保合规元件能够进行互操作;(2)它把简单易懂的测量方法和要求转化成了非常复杂的品质因数——要想理解这是什么,就得阅读本文的第2部分RM9ednc

原文链接为《What’s effective return loss, anyway? (Part 1)》,由赵明灿编译。RM9ednc

RM9ednc

RM9ednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Ransom Stephens
暂无简介...
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 5G频段扩容,毫米波成“兵家必争之地” 近期,著名苹果分析师郭明錤发布报告称,2020年苹果将发布5款新iPhone,支持毫米波/sub-6GHz技术,给一批关注5G毫米波应用的人士带来了小小的惊喜。国际标准化组织3GPP把5G频段分为FR1频段和FR2频段,FR1频段就是范围为450MHz—6GHz的sub-6GHz频段,而FR2频段则是24.25GHz—52.6GHz的毫米波频段。因此,全球5G部署的频段只有两种,sub-6GHz和毫米波。
  • 2020年,5G落地往哪儿落? 目前5G展示的能力只是冰山一角,真正的5G大规模场景开发或应用的到来,仍需较长时间。2019年是5G商用元年,那么2020年会不会被称为“5G行业落地元年”呢?
  • 2020:新时代元年,有哪些技术值得期待? 2020是一个新十年的开端,对于未来十年改变我们生活的产品和技术来说,今年将是影响深远的一年。因此,让我们看看在意法半导体 (ST) 眼中,未来有哪些新趋势。
  • 麻省理工研发超级信号放大器,可将Wi-Fi放大10倍 麻省理工学院计算机科学和人工智能实验室(CSAIL)研究人员近日研发出提高信号强度的巨大的天线墙,一款名为RFocus smart surface原型产品。
  • 实用风席卷EMC/SIPI年度大会 着重探讨电磁兼容性(EMC)、信号完整性(SI)和电源完整性(PI)的IEEE EMC+SIPI 2019年度大会与往年的最大不同是有更多的实际展示和技术研讨会。在这次会议上,EMC基础知识、实用技术内容和学术论文之间首次找到了平衡。此外,此次大会更加关注年轻的专业人士,因为一些“资深人士”开始退休,这些技能需要传给下一代。
  • 越南Viettel宣称开发出5G基站,实则“换皮‘爱立信 日前, 由越南军方控制的运营商 Viettel 表示他们首次在自研5G gNodeB设备上打通了5G视频通话。对此很多业内专家表示持怀疑态度。新京报也表示Viettel的5G“国产化”不过一层皮。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告