向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

一种改进的新型闭锁电源开关

时间:2019-07-17 作者:Anthony Smith 阅读:
在之前的一篇文章中,作者介绍了一个相对简单的电路,其中的瞬时按钮可以像机械闭锁开关一样工作。本设计实例有很多读者追问是否可能将电路调整为:(a)交叉耦合电路,其中的两个开关可以互相“抵消”;(b)“时间延迟”电路,其电路在预定时间关断。本文描述了如何实现这些电路。

EDN之前的一篇设计实例文章《Latching power switch uses momentary pushbutton》介绍了一个相对简单的电路,其中的瞬时按钮可以像机械闭锁开关一样工作。这篇文章得到了大量的读者反馈。在评论中,有读者追问是否有可能将电路调整为:(a)交叉耦合电路,其中的两个开关可以互相“抵消”;(b)“时间延迟”电路,其电路将在预定时间关断。本文将尝试实现这些电路。

交叉耦合闭锁开关

图1显示了以交叉耦合方式连接的两个开关电路,其中每个开关通过其自身的瞬时按钮开启和断开,而且当一个开关开启时,另一个会断开。由于具有相互抵消的特点,这种电路适于汽车指示灯等应用。

DI7-F1-2019.jpg
图1:交叉耦合开关独立锁定但相互抵消。

这两个开关电路完全相同并彼此镜像,即R1a与R1b提供相同的功能,Q1a与Q1b功能完全相同,依此类推。除了额外的交叉耦合元件(C2、D1、D2、R6、R7和Q3)之外,每个开关电路都与《Latching power switch uses momentary pushbutton》中介绍的基本电路大致相同,如该文章中的图1(a)所示,文章中还包括基本电路如何工作的详细说明。需要注意的是,根据负载性质的不同,R5是可选的,而且对于电机这类负载,可能需要在OUT(+)端子和负载之间连上一个阻塞二极管。

为了理解交叉耦合是如何工作的,我们假设SWITCH(a)当前关闭,SWITCH(b)打开,这使得Q1a和Q2a关闭,Q1b和Q2b都导通并通过R3b和R4b相互提供偏置。如果此时按下瞬时按钮Sw1a,则Q1a和Q2a导通,并且SWITCH(a)锁定到其通电状态。在Q2a导通的瞬间,电流脉冲通过D1a、C2a和R7a传递到Q3a的基极,导致Q3a瞬间导通,并短暂地将Q1b的基极短路至0V。Q1b和Q2b此时都关闭,SWITCH(b)锁定到关闭状态。SWITCH(a)现在锁定在其通电状态,并保持此状态直到按下任一按钮开关。如果此时按下Sw1b,则Q1b和Q2b接通,SWITCH(b)锁定到打开状态,Q3b瞬间接通,使Q1a和Q2a关断。

流经Q3的短暂电流脉冲的时间长度由C2-R7时间常数决定,这个时间要足够长以使对端的MOSFET完全关断。记住,当Q1关断时,存储在Q2栅极上的电荷必须通过与R3串联的R1完全释放。一些大电流MOSFET的栅极电容为几十纳法,因此当R1=R3=10kΩ时,栅极可能需要几毫秒才能完全放电。现在,当C2=100nF且R7=10kΩ时,Q3将Q1的基极钳位约5ms,这个时间应足够长以关闭大多数的P沟道MOSFET。

在上述电流脉冲结束时,C2上的电压将大致等于电源电压+Vs。如果没有二极管D1,该电压将保持Q1导通,从而防止开关关断。有了D1,阻断动作将允许开关正常关断,这样当Q2关断时,C2上的电压将通过R6-D2-R7这个路径放电。

尽管SWITCH(a)和SWITCH(b)是相同的,但它们并不需要同样的电源电压,即+Vs(a)和+Vs(b)不必相等并且可以来自不同的源。但由于图1中的电路要实现交叉耦合,开关(a)和开关(b)必须共用一个共地回路(0V)。对于不能共用共地回路的应用,Q3a和Q3b可以用光电耦合器代替(如图2所示),它允许每个开关有自己的接地回路,与另一个开关电隔离。大多数普通光电耦合器应该都可以正常工作,但要注意,光电LED需要比晶体管更高的驱动电压。因此如果电源电压+Vs比较低时,可能需要降低R7的值(并相应地增加C2的值)。

DI7-F2-2019.jpg
图2:光电耦合器实现了完全隔离的交叉耦合开关。

具有定时输出的闭锁开关

某些应用可能需要可以在预设的一段时间之后自动关闭的闭锁开关。图3显示了一种非常简单的实现定时输出的方法,其中Q1从单个晶体管改为达林顿管,并在Q2的漏极和R4之间插入电容器C2。和前述电路一样,瞬时按钮Sw1用于控制电路。当开关闭合时,Q2导通,并通过C2和R4向达林顿基极提供偏置电流。电路此时锁定在通电状态,Q2通过Q1保持导通。

DI7-F3-2019.jpg
图3:对基本开关电路做小改动以实现预设定时输出。

C2此时开始充电,而C2和R4连接处电压下降,下降速率很大程度上取决于C2-R4时间常数。当电压下降时,通过R4传输到达林顿基极的电流也会下降;最终,当达林顿集电极电流变得太小,无法为Q2提供足够的栅极驱动时,MOSFET关断。开关此时恢复到未锁定状态,C2开始通过D1放电,负载与R5(如果有)并联。请注意,只需按下按钮,开关即可在定时“导通”期间的任何时刻解锁,无需等到输出超时。

由于一对达林顿管提供了高电流增益,因此可以采用较大的R4值(大约几兆欧)来产生较长的时间常数。由15V电源供电的测试电路产生的“导通”时间,范围从大约9秒(C2=1μF,R4=1MΩ)到超过15分钟(C2=10μF,R4=10MΩ)。将C2增加到100μF,“导通”时间甚至可以超过两小时。

尽管该电路足以满足那些要求不高的应用,但它仍有几个可能限制其适用性的缺点。达林顿管的电流增益对于确定电路的时间常数十分重要(该增益可能因器件和温度的不同产生很大变化)。所以对于那些需要精确控制“导通”时间的应用,该电路并不适合。同样,电源电压的变化也会影响“导通”时间。

此外,达林顿管的集电极电流逐渐减小也将导致MOSFET慢慢关闭。从图4的波形图可以看出这种结果,图中显示了由15V电源供电、具有500Ω负载、采用FDS6675A MOSFET作为Q2且R4为1MΩ的电路输出。注意输出从15V(导通状态)转换到0V(关断状态)几乎需要3ms的时间。对于轻负载而言,这么长的关断时间也许是可以接受的,但对于开关大电流的MOSFET却远非理想。

DI7-F4-2019.jpg
图4:轻负载时较长的关断时间也许可以接受。

图5对上述电路进行了改进,其中达林顿管由两个开漏/开集比较器(IC1)取代,R5由潜在分压器R4-R5取代。R6-R7分压器产生参考电压Vref(比较器电源电压Vcs的恒定分数),为两个比较器提供稳定的参考电压。

DI7-F5-2019.jpg
图5:改进后的电路可提供精确时序、快速开关以及抵抗电源电压变化的能力。

第一次按下开关时,Q2导通,为负载供电,同时正向偏置D1,为比较器提供电源电压Vcs。此时,如果R4/R5=R6/R7,电压Vx将略大于Vref,使IC1a的输出晶体管导通。其输出变为低电平(接近0V),从而通过R3为Q2提供栅极偏置。

电路现在锁定在“导通”状态,定时电容C4开始通过R8充电,C4的电压Vc呈指数上升。在Vc刚刚超过Vref时,比较器IC1b跳闸,其输出晶体管导通,将Vx拉低至0V。IC1a的输出晶体管此时关断,而且由于Q2不再有栅极驱动,MOSFET关断,开关解锁。C4此时通过D2-R6-R7路径比较快速地放电。与上述的简单电路一样,只需按下开关可随时解锁开关。

阻塞二极管D1提供双重功能。当Q2关断时,它将R2与存储在C2上的电荷隔离,从而确保开关正确解锁。此外,当开关关断时,它可以防止C2(和C4)通过负载快速放电。这为比较器在Q2关断时保持供电提供了短暂的时间,从而确保电路以有序的方式关闭。为比较器供电的是开关输出而不是电源电压,这满足了本文介绍的所有电路的基本要求,即(就像机械开关一样)“关断”状态下的功耗为零。

图6显示了电路的时序公式以及当IC1=TLC393、R4=R6=10kΩ、R5=R7=22kΩ、+Vs=15V时的测试电路的结果。注意Vcs并不在公式中,因此“导通”时间基本上不受电源电压变化的影响。

DI7-F6-2019.jpg
图6:图5所示电路的时序公式和测试结果。

可以看到,测试结果和理论结果很好地吻合,除了当C4=100μF时产生的“导通”时间比计算得出的时间长很多。这很可能是由于测试所采用的电解电容器内部产生了泄漏(非电解类型用于1μF和10μF测试)。若采用合适的组件,是可以实现超过一小时的“导通”时间的。

忽略D1上的压降,比较器电源电压与直流电源电压大致相同(Vcs≈+Vs),这会影响可用的比较器类型。TLC393双微功率比较器因极小的功率要求和极低的输入偏置电流(通常为5pA)而成为理想选择,尽管它们仅限于16V左右的电源电压。LM393具有相同的功能,并可在高达30V的电源电压下使用,但由于其电源电流大于TLC393,输入偏置电流也相对较大(通常为-25nA),这会影响C4的充电速率。选择R4-R7的数值时,要确保Vx和Vref不超过比较器的高共模电压限值(对TLC393和LM393来说,大约比Vcs低1.5V)。

除了为定时输出提供相当精确的控制以外,改进型电路从“导通”状态转换到“关断”状态的速度比图3所示的简单电路也要快得多。图7所示的波形图显示了测试电路的输出,该电路由15V电压供电,并采用与上述简单电路相同的500Ω负载和FDS6675A MOSFET。与图4中稍显迟滞的响应相比,从完全“导通”到完全“关断”的开关时间大大缩短,只有大约100μs。

DI7-F7-2019.jpg
图7:电路的改进极大地提高了从“导通”到“关断”的转换速度。

选择元件

上述电路对使用的双极型晶体管和二极管并没有特殊要求,只要提供最大电源电压,大多数具有良好电流增益的NPN双极型晶体管都是适用的。在最大漏源电压、电流处理和功耗方面,P沟道MOSFET的额定值必须与高端驱动电路中的任何器件相当。需要注意的是,某些类型MOSFET的最大栅源电压限值远低于漏源电压额定值。例如,IRFR9310的最大漏源电压额定值为-400V,而栅源电压被限制在±20V。如果应用需要非常大的电源电压,则可能需要在MOSFET的栅极和源极之间连接一个保护齐纳二极管,以便将栅极电压钳位到安全水平。

尽管所有电路中都使用了按钮开关,实际上按钮开关是可以用磁簧继电器(提供磁激活开关)或其它类型的瞬时触点来代替的。唯一的要求是触点必须相对于电源轨电“浮动”。

最后,请记住图5中的IC1必须是开漏或开集类型。此外,要注意大阻抗和敏感节点使电路易受噪声影响,可能导致错误触发和某些不可预测的行为,因此要避免“杂乱”的结构,并在必要时使电路免受EMI和RFI的影响。

(原文刊登于ASPENCORE旗下EDN英文网站,参考链接: A new and improved latching power switch。)

本文为《电子技术设计》2019年7月刊杂志文章。

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 用1%电阻就能构建属于自己的差动放大器 在一种相对常见的情况下,1% 电阻器和一个较好的运算放大器便可以构建一个完全合格的差动放大器。当我们在负载“低侧”的情况下使用一个分流器进行电流测量时,共模电压常常非常小……
  • 让微控制器进入休眠状态后,到底能省多少能耗? 低功耗模式如何在真正的微控制器(MCU)上实现?这些模式如何影响嵌入式系统?在这篇文章中,将更详细探讨如何让微控制器进入睡眠状态,并看看到底能够节省多少能耗。
  • 模拟电路教程:电流源 什么是电流源?基本电流源其实就是向负载提供电流的电路。本设计实例简单介绍了下面几种电流源:称为电流镜的双晶体管电流源、Widlar电流源、Howland电流源,以及采用分立放大器和电阻器的低成本双极性电流源。
  • 差动放大器:良好匹配电阻器不可或缺的器件 在单片IC设计过程中,我们常常会竭尽所能地对内部组件进行精确的匹配。例如,精确匹配运算放大器的输入晶体管,旨在获得低失调电压。如果我们必须使用属于我们自己的离散晶体管运算放大器,则我们会得到 30mV 甚至更高的失调电压……
  • 融合GDT和MOV,Bourns打造创新型过压保护器件 在使用电子电气设备的众多恶劣环境中,雷电是其中的代表。我国某县城的统计数据显示,每年因雷电导致过压造成的设备损坏占整体的70.11%,单一工作单位的损失就可达数十万元。再加上如今消费者对于设备的功能要求越来越严苛和多样,促使电路保护元件已经从最开始的玻璃管保险丝,发展成为庞大的电子元器件分支。
  • 运算放大器的输入和输出电压范围到底有多大? 我们常常会收到一些与电源有关的应用问题,询问我们运算放大器的输入和输出电压范围到底有多大。既然大家存在这方面的疑惑,那么我们就利用这篇文章来为大家解疑释惑……
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告