广告

一种超低功耗、无频闪、无可闻噪声的中高功率智能照明双输出调光方案

2019-08-29 11:02:12 安森美 阅读:
智能照明是智能家居、智能建筑等物联网(IoT)细分领域中的关键构建块,通过智能地按需照明实现节能省电,涉及LED驱动、智能调光、通信等技术。本文介绍了针对中高功率应用的、能够实现高能效、超低功耗、无频闪、无可闻噪声的智能照明双输出调光方案。

智能照明是智能家居、智能建筑等物联网(IoT)细分领域中的关键构建块,通过智能地按需照明实现节能省电,涉及LED驱动、智能调光、通信等技术。本文将介绍安森美半导体针对中高功率应用的一个智能照明双输出调光方案,采用宽输入、混合调光的高能效FL7760降压控制器,结合行业最低功耗的蓝牙低功耗(BLE)无线电系统单芯片(SoC)评估板RSL10-002GEVB,基于可配置的快速原型平台物联网开发套件(IDK)或蓝牙IDK(B-IDK),轻易实现高能效、超低功耗、无频闪、无可闻噪声的智能照明双输出调光方案。v0kednc

可配置的模块化IDK:加快和简化应用开发

IDK是可配置的、节点到云的模块化平台,曾多次获媒体奖项并广受行业好评,使设计人员在尽可能短的时间内评估、开发和推出高度差异化的IoT系统,应用于广泛的行业领域,包括智能照明、环境监测、医疗保健、家居/楼宇自动化、工业控制和可穿戴式电子产品等。IDK集成硬件、软件平台和通用系统接口,提供宽广的联接、感知和控制配置选项,和基于Eclipse的集成开发环境(IDE),采用ARM mbed处理器,获亚马逊网络服务(AWS)和微软Microsoft Azure云认证,提供增强的灵活性和安全性,设计人员可将IDK主板与不同的扩展板(感知/互联/致动)进行扩展配置,如本文介绍的智能照明双输出调光方案基于IDK,采用两颗FL7760降压控制器用于调光,配以RSL10评估板以联接APP进行调光控制。v0kednc

Onsemi-F1-20190829.pngv0kednc
图1:IDK是可配置的、节点到云的模块化平台。v0kednc

Onsemi-F2-20190829.pngv0kednc
图2:采用两个FL7760降压控制器用于调光。v0kednc

Onsemi-F3-20190829.pngv0kednc
图3:RSL10评估板联接APP以实现LED调光。v0kednc

B-IDK:快速构建蓝牙低功耗无线应用的原型平台

蓝牙低功耗(BLE)具备优化的功耗且易于联接到智能手机,是短距联接设备的首选协议。B-IDK基于行业最低功耗的蓝牙5无线电RSL10,并结合IDK能力,提供现成的示例代码,易于连接到其它IDK子板以扩展传感和控制功能。v0kednc

FL7760子板兼容B-IDK板(BDK-GEVK),可通过PMOD连接器或Arduino连接器连接到基板。多个传感器和致动器子板可连接到BDK-GEVK以扩展功能和实现各种蓝牙低功耗IoT应用开发。v0kednc

Onsemi-F4-20190829.pngv0kednc
图4:B-IDK板(BDK-GEVK)v0kednc

FL7760:宽模拟+PWM混合调光,无频闪、无可闻噪声

调光是智能LED照明的一个重要功能,也是许多LED驱动器支持的特性。这通常使用模拟电平设置光输出或脉宽调制(PWM)信号来实现。FL7760是一款高能效的降压控制器,用于中高功率照明应用,以连续导通模式(CCM)运行,提供8至60V的宽输入电压范围,同时支持模拟调光和PWM调光。虽然PWM调光因快速开关可能会出现不理想的频闪和可闻噪声,但提供宽调光范围能力,FL7760支持1%至100%的全PWM调光范围。模拟调光没有PWM调光的缺陷,但通常调光范围仅能达到15-100%,而FL7760的模拟调光范围显著扩宽到5%至100%,这个范围令模拟调光首次成为照明设计师的一个实用的选择。FL7760的一个主要差异化创新在于,它能够在需要低于5%模拟调光下限进行调光时,无缝地结合模拟和PWM,提供混合调光,从而能够提供全范围调光功能,消除频闪和可闻噪声问题。v0kednc

FL7760提供2MHz的高开关频率,有利于缩减外形,且待机功耗低,还集成热关断、过流保护、欠压锁定等丰富的保护特性。v0kednc

通过BLE无线电联接APP进行调光控制:灵活、超低功耗v0kednc
RSL10是超低功耗、极灵活的多协议2.4GHz无线电,采用双核处理器(ARM® Cortex®-M3处理器、32位Dual-Harvard数字信号处理DSP系统),支持BLE技术和2.4GHz专有协议栈,深度睡眠模式下功耗仅62.5nW,峰值接收功耗仅7mW,其高能效获行业最高的EEMBC® ULPMark™评分。v0kednc

RSL10评估板用于评估和开发基于BLE的应用,兼容Arduino,支持PMOD接口,具有板载J-Link用于简单的调试,备用的板载串行线或JTAG(SWJ-DP)用于ARM® Cortex®-M3处理器调试,通过标准的0.1英寸header接入RSL10的所有外设,板载的4位电平转换器将RSL10的I/O信号电平转换为3.3V数字逻辑电平,具有天线匹配和滤波网络并集成PCB天线。v0kednc

测试装置

经测试,该方案提供超低功耗,满足严格的能效标准,且达2MHz的高开关频率实现较小外形,PWM调光范围1%至100%,模拟调光范围5%至100%,通过PWM+模拟的混合调光消除频闪和可闻噪声。v0kednc

Onsemi-F5-20190829.pngv0kednc
图5:智能照明双输出调光方案测试装置。v0kednc

总结

设计人员在开发智能照明调光方案时面临能效、频闪和可闻噪声等挑战,且需具备相应的通信技术专知。安森美半导体的该方案基于模块化、可配置的原型平台,简化和加快开发,采用高能效的混合调光降压控制器FL7760提供全调光范围功能,配合行业最低功耗的BLE无线电评估板RSL10-002GEVB,解决上述挑战,轻易实现高能效、超低功耗、无频闪、无可闻噪声的智能照明双输出调光方案。v0kednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了