向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

单片机电路设计中需注意的十个难点

时间:2019-10-23 阅读:
单片机是嵌入式系统的核心元件,使用单片机的电路要复杂得多,但在更改和添加新功能时,带有单片机的电路更加容易实现,这也正是电器设备使用单片机的原因。那么在单片机电路的设计中需要注意的难点有哪些?

单片机是嵌入式系统的核心元件,使用单片机的电路要复杂得多,但在更改和添加新功能时,带有单片机的电路更加容易实现,这也正是电器设备使用单片机的原因。那么在单片机电路的设计中需要注意的难点有哪些?

一、单片机上拉电阻的选择

006ednc20191023

大家可以看到复位电路中电阻R1=10k时RST是高电平 ,而当R1=50时RST为低电平,很明显R1=10k时是错误的,单片机一直处在复位状态时根本无法工作。出现这样的原因是由于RST引脚内含三极管,即便在截止状态时也会有少量截止电流,当R取的非常大时,微弱的截止电流通过就产生了高电平。

二、LED串联电阻的计算问题

通常红色贴片LED:电压1.6V-2.4V,电流2-20mA,在2-5mA亮度有所变化,5mA以上亮度基本无变化。

007ednc20191023.jpg

三、端口出现不够用的情况

这时可以借助扩展芯片来实现,比如三八译码器74HC138来拓展。

008ednc20191023.jpg

四、滤波电容

滤波电容分为高频滤波电容和低频滤波电容。

1、高频滤波电容一般用104容(0.1uF),目的是短路高频分量,保护器件免受高频干扰。普通的IC(集成)器件的电源与地之间都要加,去除高频干扰(空气静电)。

2、低频滤波电容一般用电解电容(100uF),目的是去除低频纹波,存储一部分能量,稳定电源。大多接在电源接口处,大功率元器件旁边,如:USB借口,步进电机、1602背光显示。耐压值至少高于系统最高电压的2倍。

五、三极管的作用

1、开关作用:

009ednc20191023.jpg

LEDS6为高电平时截止,为低电平时导通。

限流电阻的计算:集电极电流为I,则基极电流为I/100(这里涉及到放大作用,集电极电流是基极的100倍),PN结电压0.7V,R=(5-0.7)/(I/100)

2、放大作用:集电极电流是基极电流的100倍

3、电平转换:

010ednc20191023.jpg

当基极为高电平时,三极管导通,右侧的导线接地为低电平,当基极为低电平时,三极管截止,输出高电平。

六、数码管的相关问题

011ednc20191023

数码管点亮形成的数字由a,b,c,d,e,f,e,dp(小数点)构成,字模及真值表如上图。

七、电流电压驱动问题

由于单片机输出有限,当负载很多的时候需要另外加驱动芯片 ,比如74HC245。

八、上拉电阻

上拉电阻选取原则

  1. 从节约功耗及芯片灌电流能力考虑应当足够大;电阻大,电流小。
  2. 从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
  3. 对于高速电路,过大的上拉电阻可能会导致边沿变平缓。

综合考虑:上拉电阻常用值在1K到10K之间选取,下拉同理。

上下拉电阻,上拉就是将不确定的信号通过一个电阻嵌位在高电平,下拉同理。

  1. 电平转换,提高输出电平参数值。
  2. OC门必须加上拉电阻才能使用。
  3. 加大普通IO引脚驱动能力。
  4. 悬空引脚上下拉抗干扰。

九、晶振和复位电路

晶振电路

1、晶振选择:

根据实际系统需求选择,6M,12M,11.0592M,20M等待。

2、负载电容:

对地接2个10到30pF的电容即可,常用20pF。

3、万用表测晶振:

直接用红表笔对晶振引脚,黑表笔接GND,测量电压即可。

复位电路

把单片机内部电路设置成为一个确定的状态,所有的寄存器初始化。

51单片机的复位时间大约在2个机械周期左右,具体需要看芯片数据手册。

一般通过复位芯片或者复位电路,具体的阻容参数的计算,通过google查找。

十、按键抖动及消除

按键也是机械装置,在按下或放开的一瞬间会产生抖动,如下图:

012ednc20191023

消除方法有两种:软件除抖和硬件除抖,其中硬件除抖是应用了电容对高频信号短路的原理。

软件除抖是检测出键闭合后执行一个延时程序,产生5ms~10ms的延时,让前沿抖动消失后再一次检测键的状态,如果仍保持闭合状态电平,则确认为真正有键按下。

(责编:Demi Xia)

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 一文读懂如何为开关电源选择合适的电感 什么是电感?电感器(Inductor)是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开时它将试图维持电流不变。
  • 基本运算放大器配置 在本实验中,我们将介绍一种有源电路——运算放大器(op amp),其某些特性(高输入电阻、低输出电阻和大差分增益)使它成为近乎理想的放大器,并且是很多电路应用中的有用构建模块。在本实验中,你将了解有源电路的直流偏置,并探索若干基本功能运算放大器电路。我们还将利用此实验继续发展使用实验室硬件的技能。
  • 汽车电子设计中正确用Pspice做WCCA分析的设计要点 上篇文章讲述了在汽车电子设计中正确用Pspice做蒙特卡洛分析的设计要点,本文是它的姊妹篇,将会讲述用Pspice做最差电路分析(WCCA)的设计要点。
  • 汽车电子设计中正确用Pspice做蒙特卡洛分析的设计要点 Pspice程序功能强大,但如果其设置不正确,得到的运行结果可能不是真正的输出,从而对软件产生质疑。尤其是在汽车电子的设计中,需要做到多种分析并考虑更复杂的一些参数添加。正确使用Pspice来设计和仿真电路需要遵循一定的规则,否则得到的仿真结果并非真正的“最差”,从而会导致设计结果出错。
  • 运算放大器的奥秘 运算放大器无处不在,它源于模拟计算机时代,有着悠久的历史,现在已经成为模拟电子领域的标志性产品。为什么运算放大器如此受欢迎?未来哪些产品可能取代运算放大器?
  • 一种直接测量运算放大器输入差分电容的方法 运算放大器的输入电容和反馈电阻在放大器的响应中产生一个极点,从而影响稳定性并增加较高频率下的噪声增益。因此,稳定性和相位裕量可能会降低,输出噪声可能会增加。实际上,以前的一些差模电容测量技术依据的是高阻抗反相电路、稳定性分析以及噪声分析。这些方法可能会非常繁琐。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告