广告

水下传感器兼具能量采集与通讯

2020-02-10 阅读:
水下传感器兼具能量采集与通讯
MIT研究团队开发出免用电池的水下压电传感器,采用压电声学反向散射(PAB)设计,利用压电材料的震动产生能量并发送和接收数据,为水下能量采集与数据传输提供创新…

我一向对于工程师开发各种创意的能量采集方法很感兴趣。当然,做这件事情有着许多动机——例如,能量采集有着像是可以「不劳而获」(something for nothing)的魅力。但现实是,这方面的开发工作通常必须付出大量的劳力和成本。尽管如此,当电池或交流电(AC)无法供电的情况下,能量采集技术仍能提供电源以解决棘手的问题。ckMednc

这正是美国麻省理工学院(MIT)研究团队近来的一项研究令人着迷之处。研究人员们不仅巧妙地利用压电材料的震动来采集能量,而且还密切结合了能量采集机制与数据传输链路。该研究团队结合了两种截然不同的现象——压电效应和反向散射,以提供适度的数据传输速率、免电池的水下传感器和数据链路,研究人员将其称为「压电声学反向散射」(PAB)系统。反向散射本身是一种众所周知的技术,通常与被动式RFID和其他系统搭配使用;它采用定向的撞击能量来激发、供电以及提供响应——通常是在电磁RF范围(如图1)。ckMednc

20200206_underwater-harvesting_NT01P1ckMednc

1RF和压电声学反向散射(PAB)之间存在某种相似性:(a) 显示无线电反向散射如何透过控制天线阻抗开关而与01位进行通讯;(b) 显示PAB系统如何透过控制压电阻抗开关而与01位进行通讯。请注意,在吸收状态下,传感器可以采集能量。(来源:MITckMednc

在MIT研究团队的PAB系统中,发射器透过水将定向的声波(压力)发送到水下的压电传感器以及储存感测数据的电路¬¬——这些感测数据可能是水的温度、流量、盐度或其他参数。该浸没节点的电路板中安装有压电谐振器、能量采集单元和微控制器,如图2。当能量波撞击传感器时,压电材料产生振动并储存所产生的电荷——这就是能量采集周期的开始。接下来,传感器使用储存的能量将波反射回接收器或根本不反射波。以这种方式在反射之间交替,对应于传输数据中的位:接收器会将反射波视为1,无反射波则为0,因此可以译码串行数据串流。ckMednc

20200206_underwater-harvesting_NT01P2ckMednc

2机械和硬件制造:(a) 显示采用免电池、模拟数字硬件设计的机械制造换能器;(b) 显示分解的换能器视图。(来源:MITckMednc

压电组件作为能量采集器和接收器/发送器之间的关系紧密地结合在一起。当传感器要发送0位时,发送器将其声波发送到节点。压电谐振器吸收该波并使其略微变形(重新定向),从而产生了少量可储存的能量,待随后进行采集。由于压电组件吸收了撞击的能量,因此接收器未发现反射讯号而译码为0。ckMednc

然而,当传感器要发送1位时,动作/反应会发生改变。发射器再次发送声能波。但是,微控制器使用储存的电荷向压电谐振器发送电压脉冲,脉冲电压会影响压电材料的结构,以防止其变形。相反地,这种材料现在将入射波反射回接收器,并在此被感应以及解碼为1。ckMednc

当我看到这篇文章时,最初的想法是实际的数据传输将会非常缓慢,大约为几位/秒(但这在许多传感器应用中仍然很有用)。但是在图3的MIT大型储水箱中进行实验时(虽然并见得真的和海洋一样,但仍是个起点),它们在传感器和接收器之间的传输,达到了高达3Kbps的速率以及长达10公尺(M)的距离,可说是十分可观的成果。ckMednc

20200206_underwater-harvesting_NT01P3ckMednc

3该系统正在MIT的水下测试池中进行评估。(来源:MITckMednc

MIT媒体实验室(MIT media lab)以及该校电子工程与计算机科学系助理教授Fadel Adib说:「一旦您可以发送1和0,就能发送任何信息。基本上,我们可以仅根据传入的声音讯号与水下传感器进行通讯,这些声音讯号就是我们正在采集的能量。」Fadel Adib同时也是Signal Kinetics Research Group的创办人。ckMednc

MIT的研究人员在SIGGRAPH 2019 (8月间举行)期间发表这项研究时,研究团队尚未将该系统部署于海洋中——海洋一直是让许多电气和电子领域伤脑筋的操作环境。甚至是海洋的盐度也与每公升35克溶解盐的典型值(约3.5%,即35ppm)不同,正常范围为每公升33-37克。也可能出现明显较高或较低盐度的水下「河流」流经某个区域,导致盐度阻抗不连续性,从而影响能量路径。ckMednc

MIT研究团队的论文主题是《水下反向散射网络》(Underwater Backscatter Networking),文中详细介绍了这项研究。该研究一部份是由美国海军研究办公室(U.S. Office of Naval Research)赞助。ckMednc

您认为哪一部份是您看过最有趣、最独特或不寻常的能量采集设计?ckMednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EEtimes,参考链接:Underwater Energy Harvesting with a Data-Link Twist,编译:Susan Hong)ckMednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • Z-Trak2 3D轮廓传感器可实现最高45000行轮廓线/秒的 Teledyne Imaging推出的Z-Trak2是一个全新的3D轮廓传感器系列,能够实现最高45000行轮廓线/秒的扫描速度,在高速生产环境下进一步提高生产率。
  • 拆解小米 11 Ultra :对比三星 Galaxy S21 Ultra、华为 在3月29日的小米发布会上,小米 11 Ultra 正式亮相,售价 5999 元起,搭载高通骁龙888处理器,首发 50 MP 的三星 GN2 超大底主摄。这款被小米官方称为“安卓之光”的高端旗舰的内部构造和整体品质如何?近日视频网站上出现了关于小米 11 Ultra 的拆解视频。
  • 安森美半导体的多功能感知方案赋能工业成像应用 工业自动化趋势及人工智能(AI)的兴起推动着机器视觉市场快速发展。边缘AI不断地催生出新领域。新冠疫情进一步加速了这些自动化、智能化趋势。传统的机器视觉行业也在悄悄变化, 这些都离不开图像传感器这双眼睛。安森美半导体是智能感知的半导体领袖,尤其在工业机器视觉全球称冠,在边缘AI市场也遥遥领先,拥有宽广的成像方案阵容及先进的成像技术,满足不同应用需求。
  • 基于烟雾探测的完整测光系统,实现火灾预防的有效监测方 除了传统的火灾和烟雾探测灵敏度测试之外,更新版的UL-217标准现在还要求烟雾探测器不会在发生干扰事件时发出误警报,比如在做饭时。所以,现代的烟雾探测器必须能够区分烹饪干扰事件和火灾事件。
  • 教你如何将微小的传感器讯号正确连接到ADC 本文介绍最新整合解决方案,可以协助工程师解决超出当下能力范围的问题。文中并介绍配置完整传感器接口仪表放大器以驱动ADC输入的步骤...
  • 思特威推出400万像素高阶成像系列升级图像传感器产品 作为一款赋能“全天候AI相机”的产品,思特威SC450AI除在安防智视终端摄像头领域大有作为外,更可在智能门铃、穿戴式摄像头及家用监护型摄像头等全天候物联网AI相机设备中大显身手。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了