向右滑动:上一篇 向左滑动:下一篇 我知道了
广告

水下传感器兼具能量采集与通讯

时间:2020-02-10 阅读:
MIT研究团队开发出免用电池的水下压电传感器,采用压电声学反向散射(PAB)设计,利用压电材料的震动产生能量并发送和接收数据,为水下能量采集与数据传输提供创新…

我一向对于工程师开发各种创意的能量采集方法很感兴趣。当然,做这件事情有着许多动机——例如,能量采集有着像是可以「不劳而获」(something for nothing)的魅力。但现实是,这方面的开发工作通常必须付出大量的劳力和成本。尽管如此,当电池或交流电(AC)无法供电的情况下,能量采集技术仍能提供电源以解决棘手的问题。FlLednc

这正是美国麻省理工学院(MIT)研究团队近来的一项研究令人着迷之处。研究人员们不仅巧妙地利用压电材料的震动来采集能量,而且还密切结合了能量采集机制与数据传输链路。该研究团队结合了两种截然不同的现象——压电效应和反向散射,以提供适度的数据传输速率、免电池的水下传感器和数据链路,研究人员将其称为「压电声学反向散射」(PAB)系统。反向散射本身是一种众所周知的技术,通常与被动式RFID和其他系统搭配使用;它采用定向的撞击能量来激发、供电以及提供响应——通常是在电磁RF范围(如图1)。FlLednc

20200206_underwater-harvesting_NT01P1FlLednc

1RF和压电声学反向散射(PAB)之间存在某种相似性:(a) 显示无线电反向散射如何透过控制天线阻抗开关而与01位进行通讯;(b) 显示PAB系统如何透过控制压电阻抗开关而与01位进行通讯。请注意,在吸收状态下,传感器可以采集能量。(来源:MITFlLednc

在MIT研究团队的PAB系统中,发射器透过水将定向的声波(压力)发送到水下的压电传感器以及储存感测数据的电路¬¬——这些感测数据可能是水的温度、流量、盐度或其他参数。该浸没节点的电路板中安装有压电谐振器、能量采集单元和微控制器,如图2。当能量波撞击传感器时,压电材料产生振动并储存所产生的电荷——这就是能量采集周期的开始。接下来,传感器使用储存的能量将波反射回接收器或根本不反射波。以这种方式在反射之间交替,对应于传输数据中的位:接收器会将反射波视为1,无反射波则为0,因此可以译码串行数据串流。FlLednc

20200206_underwater-harvesting_NT01P2FlLednc

2机械和硬件制造:(a) 显示采用免电池、模拟数字硬件设计的机械制造换能器;(b) 显示分解的换能器视图。(来源:MITFlLednc

压电组件作为能量采集器和接收器/发送器之间的关系紧密地结合在一起。当传感器要发送0位时,发送器将其声波发送到节点。压电谐振器吸收该波并使其略微变形(重新定向),从而产生了少量可储存的能量,待随后进行采集。由于压电组件吸收了撞击的能量,因此接收器未发现反射讯号而译码为0。FlLednc

然而,当传感器要发送1位时,动作/反应会发生改变。发射器再次发送声能波。但是,微控制器使用储存的电荷向压电谐振器发送电压脉冲,脉冲电压会影响压电材料的结构,以防止其变形。相反地,这种材料现在将入射波反射回接收器,并在此被感应以及解碼为1。FlLednc

当我看到这篇文章时,最初的想法是实际的数据传输将会非常缓慢,大约为几位/秒(但这在许多传感器应用中仍然很有用)。但是在图3的MIT大型储水箱中进行实验时(虽然并见得真的和海洋一样,但仍是个起点),它们在传感器和接收器之间的传输,达到了高达3Kbps的速率以及长达10公尺(M)的距离,可说是十分可观的成果。FlLednc

20200206_underwater-harvesting_NT01P3FlLednc

3该系统正在MIT的水下测试池中进行评估。(来源:MITFlLednc

MIT媒体实验室(MIT media lab)以及该校电子工程与计算机科学系助理教授Fadel Adib说:「一旦您可以发送1和0,就能发送任何信息。基本上,我们可以仅根据传入的声音讯号与水下传感器进行通讯,这些声音讯号就是我们正在采集的能量。」Fadel Adib同时也是Signal Kinetics Research Group的创办人。FlLednc

MIT的研究人员在SIGGRAPH 2019 (8月间举行)期间发表这项研究时,研究团队尚未将该系统部署于海洋中——海洋一直是让许多电气和电子领域伤脑筋的操作环境。甚至是海洋的盐度也与每公升35克溶解盐的典型值(约3.5%,即35ppm)不同,正常范围为每公升33-37克。也可能出现明显较高或较低盐度的水下「河流」流经某个区域,导致盐度阻抗不连续性,从而影响能量路径。FlLednc

MIT研究团队的论文主题是《水下反向散射网络》(Underwater Backscatter Networking),文中详细介绍了这项研究。该研究一部份是由美国海军研究办公室(U.S. Office of Naval Research)赞助。FlLednc

您认为哪一部份是您看过最有趣、最独特或不寻常的能量采集设计?FlLednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EEtimes,参考链接:Underwater Energy Harvesting with a Data-Link Twist,编译:Susan Hong)FlLednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
您可能感兴趣的文章
  • 基于 MEMS 的“硅芯片声纳”超声波ToF传感器扩大了感 CH-101是首款实现商用的基于MEMS的超声波ToF传感器,主要应用于消费电子、AR/VR、机器人、无人机、物联网(IoT)、汽车和工业市场领域。
  • 创建一个集成且不显眼的糖尿病管理系统 由于这些仪器通常在皮下测量间质液,直到最近,还需要定期校准血液,即需要老派的戳手指。然而,随着技术的进步,一些CGM现在无需对全血进行校准。
  • 48 V机器人的兴起 机器人的迅速普及不仅限于工业领域,到2018年为止已部署了25万台“专业服务”机器人。这是惊人的增长,年增率超过60%。五分之二已部署的服务机器人被归类为自动导引车(AGV),主要用于物流和制造业。个人和家用机器人市场的增长速度相似(约为60%),目前包括约1,630万台机器人,用于吸尘、教育和研究等各种任务。
  • 人工智能时代不断变化的工业格局 尽管AI技术并不是什么新鲜事物,但数据的爆炸式增长促使AI以惊人的速度发展,例如在百度和谷歌等数十亿次的搜索提供了相当大的实时数据集,支持了AI的蓬勃发展。
  • 一种降低烟感产品误报率的解决方案 现有的烟感方案如电离传感器,光电传感器构成的产品,可以很好的测量烟雾。一般电离传感器方案,会比较快的对传统烟雾进行报警,这取决于烟腔迷宫的设计。而光电传感器,可以更早的对阴燃物体产生的烟雾进行报警,从而提前预防火灾的发生。但这两种方式,对烧焦的汉堡或水蒸气干扰情况的辨识度较差,容易发生误报,需要很有经验的软件人员将其与真实的烟雾区分出来。
  • 技术开发生态系统对持续提升自动驾驶安全至关重要 自动驾驶汽车(AV)正迅速从炒作走向现实。Emerj最近的报告记载了11家最大的汽车厂商计划,其中本田、丰田和雷诺日产最早将于明年开展计划。然而,很明显,部署批量生产的自动驾驶汽车比传统汽车有更多的要求。
相关推荐
    广告
    近期热点
    广告
    广告
    广告
    可能感兴趣的话题
    广告