广告

1963—1978:芯片设计源起

2020-02-17 09:39:34 矽说 阅读:
1963年,在集成电路“被”发明5年后,喝的醉醺醺的Widlar跑到一家硅谷公司,然后指着人家的鼻子说你们的电路设计都他X的是Bullshit。这种行为可以称为太岁头上动土,因为这家公司的老板之一发明了正真意义的集成电路,他名字叫Bob Noyce。

酒,NEvednc

凡人喝是要醉的。NEvednc

仙人喝是会造世的。NEvednc

李白一斗诗百篇,长安市上酒家眠。张旭三杯草圣传,挥毫落纸如云烟。NEvednc

最早的集成电路设计师也是一个酒鬼,一个爱竖中指的酒鬼,一个不给酒喝就不作报告的酒鬼——Robert Widlar。NEvednc

1963年,在集成电路“被”发明5年后,喝的醉醺醺的Widlar跑到一家硅谷公司,然后指着人家的鼻子说你们的电路设计都他X的是Bullshit。这种行为可以称为太岁头上动土,因为这家公司的老板之一发明了正真意义的集成电路,他名字叫Bob Noyce。只可惜Noyce活得没有Jack Kilby久,没等到诺贝尔奖砸下来的那一天。自然,那公司就是Noyce等八位叛出师门——晶体管发明者Shockley后的创立的Fairchild仙童半导体,史称Traitorous Eight(仙童八叛徒)。NEvednc

NEvednc

仙童八“叛徒”(Traitorous Eight),背叛Shockley创立仙童半导体NEvednc

然后,仙童雇了Widlar帮他们设计模拟电路。(听上去像受虐狂?)NEvednc

接下来,Widlar说:NEvednc

要有运算放大器,于是有了μA702,NEvednc

要有带隙基准,于是有了LM113,NEvednc

要有功率放大输出,于是有了μA709,NEvednc

要有线性稳压器(LDO),于是有了LM100。NEvednc

(那些μA是不是很眼熟,对,就是模拟电路学基础里面里μA741的祖宗。μA系列的运放统治了人类集成电路模拟芯片20年。)NEvednc

硅谷的半导体人都很讨厌这个自以为是的酒鬼,但是又不得不佩服那个天才。佩服到国家半导体(National Semiconductor, Wildar后面几年的雇主,几年前被TI收购)的广告用的是Widlar的标志性的中指来蔑视对手。NEvednc

NEvednc

(本图片会令某些读者感到不适)NEvednc

然后,Widlar说,我要退休了,在33岁的时候。坊间有短文写了模拟电路的九重境界,境界最高的是住在太平洋的小岛上钓鱼,然后偶尔瞥一眼人间的芸芸电路,这就是Widlar退休后的生活。当然,他还是偶尔会入世一下,比如在1981年的时候,一不小心创立了Linear Technology(凌特,前两年被ADI收购了)。NEvednc

1991年Widlar死于因长期酗酒引发的心脏病,55岁,酒鬼的命。NEvednc

Widlar波西米亚式的美式英雄主义拥有很多迷弟。1969年,一个刚从Arizona毕业的小Ph.D抱着对Widlar的无限憧憬,加入仙童半导体。NEvednc

只可惜那时候,Widlar已经离开了仙童,走的时候还不忘指着公司大VP Gordon Moore(对,就是摩尔定律的那个摩尔)鼻子说:傻X都是会做数字电路(原话:Every idiot can count from zero to one)。因为Moore认为仙童应该把战略着重于数字电路发展。很快,Noyce和Moore也离开了仙童,去开创他们的大英帝国(intel),这自然是后话。NEvednc

NEvednc

1971年, 没有了主心骨的仙童已经风雨飘摇,遭遇大萧条。这一年,那个迷弟遇见了附近一个学校的一位教授,那位教授说他们缺一位教电路的老师教电路基础理论,其实是他自己不想上了就找了个接盘侠上。恰好那个迷弟刚有了儿子,不如归去地换一份安稳的差事。NEvednc

那间学校叫做加州大学伯克利分校(UC Berkeley),那位教授叫Donald Pederson。IEEE固态电路协会(就是ISSCC/JSSC的那个Solid State Circuit的固态电路)的最高荣誉称为为IEEE Donald Pederson奖,每年在ISSCC上由IEEE主席授予,用于纪念芯片设计的开山鼻祖——Donald Pederson。NEvednc

NEvednc

先提一下迷弟,他最终继承了Widlar的衣钵,开创了模拟电路的黄金时代。他和他学生们发明了这个世界上的已有的大部分模拟电路/数模混合集成电路,包括行云流水的放大器、开关电容滤波器、采样电路、和逐次比较型/流水线型/Delta-Sgima型/Time-interleaved型的ADC。更重要的,他写了模拟电路设计领域的当之无愧的”圣经“——Analysis and Design Analog Integrated Circuits ,已经出了五版。(虽然他的学生辈有一位写了一本类似”圣经故事“的教科书,好像流传更广,因为更容易懂,但圣经地位不容挑战)。NEvednc

他是Paul Gray,曾任UC Berkeley的副校长,美国的两院院士。NEvednc

NEvednc

回到Pederson,整个固态电路愿奉他为开山一哥,并不在于他的电路设计能力,而源于他愿意给一门从来没有开过的课打分。NEvednc

1969年,在仙童混的并不怎么开心的Ron Rohrer打算去UC Berkeley上上课,做个副业散散心。原来上这课的老师去当系主任了,就随他便爱咋上咋上。在这门课上,他布置了一个史无前例的作业,写一个电路模拟器,支持直流/交流/时序分析,支持各种半导体器件,然后邀请Don Pederson做评委,决定给谁A。Pederson最满意的学生叫做Larry Nagel,他把他的课程设计起名为Circuit Analysis of Nonlinear Circuits, Excluding Radiation,简写为CANCER。常说,起名字的艺术是缺啥补啥,所以这帮书呆子要补cancer么?(cancer中文翻译为癌症。)NEvednc

NEvednc

尔后,Pederson收了这个学生做博士,进一步优化CANCER。当然,优化的第一步就是起一个好听的名字,CANCER很快被改名为Simulation Program with Integrated Circuit Emphasis,简写为SPICE。SPICE作为一篇论文,当时也没啥很好归宿,只在1973年中了一篇Midwest Circuits Theory的会议论文(现在这会叫做MWSCAS,也是小编学术灌水的起点,现在看来突然爆有成就感。)NEvednc

然而,学术圈的”了了“并没有阻碍SPICE的光芒万丈。直到今天,SPICE仍然在影响着每一片芯片。所有的EDA厂商都提供基于SPICE的仿真器,Cadence有PSPICE和Spectre,Synopsys有HSPICE,国产华大九天有ALPS(Accurate Large-capacity Parallel Spice,市面上唯一支持GPU并行的集成电路仿真器),还有上文提到的凌特仍然在提供免费版的LTSPICE供电路爱好者使用。NEvednc

NEvednc

**不能算广告** 我国EDA厂商华大九天于2018年发布的ALPS-GT仿真器NEvednc

成为了第一个跑在GPU上的SPICE,性能超越了HSPICE和SpectreNEvednc

SPICE是整个晶体管级设计的中流砥柱,也是集成电路的EDA学科的奠基石。如今的电路设计师们对SPICE的依赖,已经让我们无法想象,在没有SPICE的岁月里,Widlar们是靠怎样的智慧在一片Wafer硅片上搞出一个完整的运算放大器的了。NEvednc

为什么SPICE会成功?我觉得有两个答案:NEvednc

1)开源、开源、开源。(重要的事情说三遍)NEvednc

2)作为一个仿真器,SPICE令电路设计“平民”化了。在SPICE之前,只有Widlar这样的天才才能设计优美的电路;但有了SPICE之后,庸才的可以通过一种新生的动物——SPICE Monkey(泛指那些搞不懂电路原理但是仍能通过仿真瞎撞出电路的解)来设计高性能的电路。NEvednc

顺便提一句,那些模拟电路大佬不要再歧视SPICE Monkey们了,如今风声水起的人工智能强化学习/AlphaZero用的就是这泼猴,SPICE又能跑GPU了,分分钟能抢你们的饭碗。NEvednc

1971年11月15日,离开仙童两年后的Noyce和Moore搞了一个大新闻——Intel发布了人类第一颗微处理器芯片,代号4004,因为它是一颗4位的处理器芯片。不到一年,Intel又发布了8008,第一颗8位处理器。这两颗芯片另一个划时代的意义在于使用MOS管做的,4004/8008的成功也宣告了基于双极型晶体管的TTL逻辑门在大规模集成电路中下课了!NEvednc

NEvednc

intel 8008的芯片版图与封装NEvednc

当年,Intel更成功的战场是存储器芯片,特别是DRAM。因此8008采用的寄存器部分的电路(包括各类Register和PC-就是instruction register)都采用了自家的DRAM设计。这些东西也是从版图照片(上图右上部分)上看上去唯一接近现代超大规模集成电路(Very Large Scale Integrated Circuits)的部分。NEvednc

也是从这时起,整个硅谷才意识到Intel的老板6年前的的一篇灌水文《Cramming more components onto integrated circuits》开始有点那么回事儿。NEvednc

NEvednc

加州理工学院的Carver Mead教授就第一个站出来,举荐把上面那篇水文的结论命名为“Moore‘s Law”,就是现在每个芯片人耳熟能详的摩尔定律。然后,intel就请他当了好久好久的consultant。听上去像不像那种武侠小说里推 (gui) 派 (tian) 武林盟主的场面?NEvednc

4004和8008虽然具有里程碑式意义,但是缺点也是明显的——他们都是人徒手画出了的。他们使用的晶体管数量都只在两三千个左右,人力终是有限。那么,问题来了——按照摩尔定律,芯片设计怎样向两三万、二三十万,两三百万、两三亿…个晶体管迈进?NEvednc

解决这个问题的人,在70年代初本来是打算离开硬件这个坑,去当码农的。NEvednc

不是因为她平庸,而是太卓越。27岁的时候,她就公认是计算机体系结构的天才,发明了最最基础的CPU提速方法——乱序动态调度(Out-of-order Dynamic Scheduling)架构,在集成电路微处理器芯片还没出现前,大家还没搞清楚啥是冯诺依曼架构的时候,就在IBM就造出了人类第一台超标量(Superscalar)计算机。NEvednc

有个小错误,年少成名的时候,她应该是他。后来,他变性为了她。NEvednc

因为变性手术,IBM开除了这位女装大佬,就像英国人无法忍受图灵是个同性恋一样,不管你贡献再优秀。受此打击,变性后的她打算隐姓埋名,相忘于江湖。在一本自己爱看的小说里找了自己喜欢的女主的名字按在自己头上,这样一个崭新的Lynn Conway诞生了,至于本名现在已经被灭迹得差不多了,不可考了。NEvednc

NEvednc

风韵犹存的Lynn Conway,摄于2000年NEvednc

长江后浪推前浪,Conway突然发现4004诞生后,TTL的时代一去不复返,她一个不懂的MOSFET的体系结构工程师恐怕是要下岗了。于是她放弃仙童体系架构师的优缺,去了施乐(Xerox,就是那个打印机公司)写软件,简直就是归隐藏经阁的扫地僧。NEvednc

巧的是,那个定下Moore定律盛名的Mead教授找上了施乐,要写一个软件来完成多器件环境下的布线。NEvednc

暌违数年后,Conway在1978年完成他人生的第二个大成就——提出了全新的数字电路/超大规模集成电路设计方法,可以简单描述为两个层面:NEvednc

(1)布局采用长得一样高的数字标准单元库,用棒图(stick diagram)符号化,然后抽象出门级模型NEvednc

(2)走线基于特征尺寸lamda的布线网格(grid),算法简洁且能跟随摩尔定律缩减NEvednc

NEvednc

上述两条被认为是超大规模集成电路方法学的起点。原来是一坨浆糊的数字电路设计流程,被很快地分割成抽象层的逻辑表达,和物理层的版图实现,即我们所常用的RTL前端和版图后端。今天,数字电路仍然遵循了这样的分工模式。NEvednc

这看上去的一小步,却是芯片史上最大的一步!NEvednc

有了方法学,才逐步形成了综合/自动布局布线等EDA工具链;NEvednc

有了方法学,电路设计和工艺制造的接口才完全明确,促生了一种全新的流片模式——MPW,不同的设计/同一种工艺的小批量打样(DARPA基于该成果打造了MOSIS,专注于MPW设计流程);NEvednc

有了方法学,和MPW,才有现在的Fabless IC Design House+Foundry的主流芯片模式。NEvednc

大繁至简,或许可以归纳Lynn Conway的方法学。NEvednc

后记

其实1963-1978还发生了很多事,比如一颗DRAM,无源滤波器,ISSCC的第一次召开等等……毕竟那是一个开宗立派的年代,但是我还是最喜欢这个五个故事,代表了芯片设计中模拟/数字/数模混合/EDA的起源。在这特殊的年节,矽说祝大家节日愉快。如果有可能,可以慢慢思考那些故事给你科研的启发。NEvednc

(本文授权自公众号矽说,作者:痴笑;责编:Demi Xia)NEvednc

  • 这篇文章写得真好!轻快,风趣,充实。
  • 这就是美国强大的一部分原因,我们真的需要学习借鉴
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 商务部暂停天然砂对台湾地区出口,台积电难受了 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 美国参议院批准价值2460亿美元的芯片法案 美国参议院周三通过立法,以超过 750 亿美元支持国内半导体产业。GlobalFoundries、英特尔、三星代工厂、德州仪器、台积电和其他在美国建立半导体制造设施的公司或将受益。
  • 空调也“怕热”?空调工作临界点到底是什么? 深圳最高气温突破40℃!很多网友戏称:这条命是空调给的,不敢走出空调房。但同时,这两天明显感觉空调动力不足了,以为家里的空调坏了。与此同时,关于格力空调“怕热”遭遇“空调工作临界点”罢工的成了网友关注的热点。
  • 林志颖驾特斯拉出车祸:特斯拉回应起火原因不明,网友质疑 据EDN电子技术设计了解,7月22日上午10时50分左右,林志颖驾驶特斯拉Model X,在路口处掉头后加速向前行驶,但在前方道路分叉口处,因不明原因突然偏离车道自撞指示杆,整辆车陷入火海。此事引起网友关注热议,特斯拉客服表示,暂不清楚起火原因,但车身没有特别容易起火的材质。但有台媒指出,林志颖最爱特斯拉的自动驾驶功能,这也引起了网友对事故是否与自动驾驶有关的猜测。
  • 售价将超50万美元,乔布斯的Apple-1原型机电路板长什么 这块在 1976 年由史蒂夫-沃兹尼亚克手工焊接的 Apple Computer A 印刷电路板被史蒂夫-乔布斯用来向保罗-特雷尔演示 Apple-1 电脑,后者是加州山景城 The Byte Shop 的老板。这台原型机在“苹果车库”里保存了很多年,然后在大约 30 年前由史蒂夫-乔布斯交给了它现在的主人。当时,乔布斯已被苹果公司赶走。乔布斯当时认为这个原型不是要供奉的东西,而是要被重新利用的东西。
  • 利用反极性MOSFET帮助555振荡器忽略电源和温度变化 恒定频率振荡器是555定时器的经典应用之一。然而,由于所用二极管的特性不理想,占空比的间隔会随着温度和V+电源的变化而变化。本设计实例给出了一种解决方法:利用反极性P沟道MOSFET引导电容的充电电流而不产生任何明显压降。
  • 高通发布4nm骁龙W5+骁龙W5芯片,专为可穿戴设计 据EDN电子技术设计报道,高通7月20日正式发布了全新4nm制程的骁龙可穿戴平台W5 Gen1和骁龙W5+ Gen。与两年前的上一代产品骁龙wear 4100相比,骁龙W5与W5+采用了全新的命名方式,整体功耗降低超50%。SoC工艺从12nm提升到4nm,协处理器使用22nm制程工艺。
  • M2 Pro 和 M2 Max 或是苹果首款采用台积电3nm 工艺的 M1 Pro 和 M1 Max 最多可配置 10 核 CPU 和 32 核 GPU。借助 M2 Pro 和 M2 Max,Apple 有望突破这一门槛,为这两个领域带来更多的核心数量。目前M2 Pro相关的爆料很少,但据称M2 Max 有12 核 GPU 和 38 核 GPU。12 核 CPU 将包括 10 个性能核心和两个能效核心。
  • 华为鸿蒙3.0即将发布,首款新品是一款11英寸高端旗舰平 据EDN电子技术设计报道,终端官方微博昨天正式宣布,将于7月27日正式发布Harmony OS 3.0手机操作系统,新系统重点升级了流畅度、万物互联,以及鸿蒙车机等功能。此外,还将带来的首款新品:华为MatePad Pro 11,从宣传海报来看这是一款11英寸高端旗舰平板.
  • 中信拆了辆特斯拉Model 3,发现多个领域技术引领行业 EDN电子技术设计在6月底报道了海通国际手动拆解十万元的比亚迪“元”的详细拆解图,如今不到一个月的时间,中信证券微信公众号发表了一篇《从拆解Model 3看智能电动汽车发展趋势》的文章,文中称对特斯拉Model 3的E/E架构、三电、热管理、车身等进行了详细深入地分析,并坚定看好中国智能电动化发展趋势,引起了广泛关注。
  • 经典电子小制作项目:DS18B20制作的测温系统原程序原理 下面介绍的这款DS18B20制作的测温系统,测量的温度精度达到0.1度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。DS18B20的外型与常用的三极管一模一样,用导线将JK—DS的DA端连到P3.1上。连接好DS18B20注意极性不要弄反,否则可能烧坏。
  • OPPO被曝测试240W快充,但实际速度不及vivo的200W 爆料称OPPO正在试产24V10A的240W充电器。对于采用双电芯三电荷泵设计的电池而言,其理论峰值功率可以达到300W,但目前的USB Type-C接口规范的最高功率为240W,OPPO这次一下子将C口快充做到了“天花板”级别。不过,OPPO和vivo不太一样,虽然前者测试的是240W快充,但充电策略偏向保守,实际速度可能不如vivo的200W。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了