广告

对比不同化学配比不同SOC材料/电芯的热稳定性

2020-04-03 14:21:53 弗雷刘 阅读:
三元NCM电池的电芯层级安全性也取决于其脱锂程度(即SOC)——业内大家都知道,高SOC下电芯会更不稳定,而过充滥用更是导致许多电池安全事故的直接原因。所以NCM的化学配比和SOC这两个变量会如何同时作用来影响NCM电芯的安全性呢?这就是本文要研究的点。

作者有话说:要在一个行业中成长进步需要不断的学习和思考,我也一直在坚持每天学习行业里的新知识。在这里我会挑选中经典的文献研读,分析,把知识分享给大家,希望各位能够喜欢。IRrednc

今天给大家带来的是第一篇,大名鼎鼎的Jeff Dahn教授(就是TESLA的签约首席电芯化学科学家)的一篇文章:用ARC绝热量热仪来研究不同化学配比NCM材料在不同脱锂/SOC状态下的热稳定性。IRrednc

本文为刘博系列专栏《刘博带你读文献》的第一篇,全是技术分析,没有吐槽。IRrednc


锂离子电池在车上使用,安全性已经受到了越来越多的重视。三元NCM材料随着镍含量的提高能量可以提高,但是相应的安全性会有更多的挑战。与此同时,三元NCM电池的电芯层级安全性也取决于其脱锂程度(即SOC)——业内大家都知道,高SOC下电芯会更不稳定,而过充滥用更是导致许多电池安全事故的直接原因。IRrednc

所以NCM的化学配比和SOC这两个变量会如何同时作用来影响NCM电芯的安全性呢?这就是本文要研究的点。IRrednc

实验准备

Jeff 教授组从湖南立方公司买的刚刚制好的半成品软包电芯(没灌电解液),主要有NCM111, 442,532,622和811五种体系。运到加拿大后,他们再灌入传统的EC:EMC(3:7)的电解液,再进行化成等处理工序得到电芯,把这些电芯充到不同电压(4.2,4.4,4.5,4.7V),然后用绝热量热仪ARC来研究这些电芯的热失控行为:主要的一个关注指标点就是自加热温度(SHR, self-heating rate)的明显上升,用这个上升点来定量比较不同化学配比不同SOC材料/电芯的热稳定性。IRrednc

IRrednc

本图(Table 2)提供了数据,可以很方便的去对应不同的NCM材料充电到不同电压时,相应的脱锂/嵌锂量和容量发挥。IRrednc

如果定义4.2V为100%SOC,可以看到:IRrednc

  • 811可以发挥215mAh/g,脱锂程度为78%;
  • 532可以发挥180mAh/g,脱锂程度为61.4%;
  • 111可以发挥160mAh/g,脱锂程度为57.6%。

注意:基于4.2V为100%SOC,可以看出本文研究的全是过充场景下的安全性,并没有涉及到平时使用区间(0~100%SOC)中电池的热稳定性问题。IRrednc

结果讨论

IRrednc

不同化学配比+不同SOC状态的三元材料的自加热速率SHR(单位oC/min)随温度的变化IRrednc

因为本实验是控制变量为SOC和正极材料NCM配比,全电池中的其它因素(隔膜、负极)对于热失控的影响就不考虑了。从这个图不难看出:IRrednc

  • 图A的NMC 111:4.2V的材料(黑色曲线)一直到225度自加热都很低,之后曲线才明显上抬——说明该材料在100%SOC下热稳定性还是不错的。但是你要是从这开始过充,到4.4,4.5和4.7V,可以看出曲线明显开始左移,说明过充材料热稳定性明显下滑,4.7V的SHR基本从180度左右就开始了。
  • 图B的NMC442:其实个人感觉与111的曲线区别不大。
  • 图C的NMC532:4.2,4.5和4.7V的SHR都开始的会比较早,150度左右就“龙抬头”了——可以说相比于111,442,该材料在不同SOC下几乎热稳定性都有所变弱。有点意外的是紫色的4.7V曲线。按理说应该是越过充越不稳定的,但是它却在最晚才提升。对此本文作者并没给出好的解释,刘博在这更倾向认为可能与实验误差有关。
  • 图D的NMC622:虽然曲线看着和NMC532不太一样,但是从关键的SHR开始上升温度来看,其实与532差不多。黑色的4.2V材料明显稳定性好一点(160度),而随着截止电压的升高SHR有一定的提前,但是幅度也不是很明显(最高SOC的大约提前到了150度)(comment:所以似乎622能量有提升安全性能也不错,应该是现阶段保守追求能量密度的一个不错的折中方案)
  • 图E的NMC811:这个就比较好玩了:几乎过充的SOC不影响热失控温度增长行为,都是在120度以上,所有曲线都是重合的。

所以本文的主要结论为:

  • 过充导致安全性下降,自加热事件开始提前。
  • 除了NMC811,其它材料基本都是自加热事件开始温度与脱锂程度相关(SOC高,开始早)——看下图:基本除了811,都能把点(硬)拟合出条线性关系(y=kx+b)来。当然811也可以拟合出条线(不过是平的,不受SOC影响)。
  • 镍含量提高安全性会降低,811材料的过充对自加热行为影响不大。

IRrednc

刘博乱弹

安全性VS能量密度的老话题IRrednc

所以还是那句话:能量密度VS安全性能的取舍问题,真的是技术上的难点和精华所在。811能量密度香不香啊,但是安全就比较有挑战,不是谁都做的了的。IRrednc

以及我就特别好奇了,你要是811安全不好做,无钴你安全又能做成什么样?IRrednc

本文并不是在着力解决安全性能——还有很多办法可以提高811的安全性IRrednc

大家看了这个研究结果可能会恐慌,811安全性能这么差怎么办啊?但是我想说的是这个实验只是一个控制变量的对比实验,用的都是纯的普通811材料(Pristine),重心并不在改进材料改进电芯提高安全性上,而这恰恰是很多材料厂(比如掺杂包覆)和电芯厂(比如电解液添加剂)在做的工作的精华所在。所以真实的811电芯肯定安全性比这要好,大家不要这么担心,当然需要我们认真追踪和研究技术上的进展情况。IRrednc

过充作为热失控触发机理的问题IRrednc

大家要注意一点,本文研究的内容相当于是表征过充状态下(≥100%SOC)NMC材料/电芯的热稳定性,并没有主要涉及到我们日常定义的0-100%SOC常见区间。其实这个结果对于过充滥用触发热失控的研究场景更有参考意义。不难看出:对于不同化学体系,SOC/过充对他们的热行为影响会很明显(不同),再考虑到过充引入的能量本身就会受电芯设计、添加剂等因素的影响,因此我估计这也是为什么在电池安全性评估时如果是考虑热失控触发机制,不太使用过充的原因——带来的变量和不可控因素太多,相比之下加热(就是烤到200来度)以及针刺就要好控制的多。IRrednc

当然,过充本身作为一项电芯安全中的重要内容(而不是热失控的触发机制),当然值得深入研究和提出应对方案,这个是永远的重要研究方向。IRrednc

可惜没有低SOC的数据IRrednc

本工作的一个小小的遗憾是没有研究低SOC下的热失控行为,要是能从0%SOC的数据一直列到本文的150%SOC以上的话,那样数据的系统性会更好,对于材料热性能的研究会更透彻。而且没准(纯)811材料其实在100%SOC下随着SOC降低安全性会有明显提升(对NCA是这样的)。IRrednc

考虑下次可以把有不同材料的0-100%SOC热稳定性对比数据的文章与大家再分享一下。IRrednc

(本文授权自公众号弗雷刘,版权归作者所有,转载请联系作者本人。责编:Demi Xia)IRrednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 一个Apple Watch Series 7被曝因“热失控”而爆炸,苹果 据EDN电子技术设计引援外媒报道,日前,一位Apple Watch Series 7用户经历了电池出现膨胀、过热并最终“爆炸”的情况,据悉,该用户在过程中曾联系苹果官方客服,苹果方面做出回应,也试图让该用户不要对外界透露此事。
  • 特斯拉电池设备引发变电站起火,用新技术提高电网效率靠 美国加利福尼亚州蒙特雷太平洋瓦电公司的一个变电站起火。据悉,起火的主要原因是由于变电站中的特斯拉Megapack巨型电池储能设备出问题而导致的。
  • 麻省理工发布新概念的低成本电池 麻省理工学院(MIT)和其他机构的研究人员合作开发出一种新型电池,完全由丰富且廉价的材料制成,可为可再生能源提供低成本的备用存储。
  • 在电极上刷一层粉末可防止锂金属从阳极流失、以及枝晶 在锂金属电池中,石墨作为阳极被纯金属锂取代,这种材料提供了非常高的能量密度,可以使电池充电更快,并提供多达10倍的容量,但目前的技术还难以让它长时间稳定地工作。当电池循环时,枝晶会在阳极上形成,并可能导致电池短路、故障或着火。莱斯大学化学家James Tour介绍了一种技术,通过简单地将粉末刷入电池阳极表面来调整电池阳极表面。粉末粘附在阳极上,形成一层薄薄的锂化涂层,可有效防止有害枝晶的形成。
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • 香港科技大学打造出新型耐用氢燃料电池 氢燃料电池发电在很大程度上依赖于一种电催化剂,即主要由昂贵稀有金属铂组成的材料。科学家们一直在努力开发替代品,用更常见和更便宜的材料(如铁-氮-碳)代替铂,但这些材料要么被证明在发电方面效率低下,要么耐用性差。现在,香港科技大学的研究人员开发出一种迄今为止世界上最耐用新型氢燃料电池,而且更具成本效益……
  • 麻省理工开发利用人体自身糖分发电的超薄燃料电池 该装置比其他提议的葡萄糖燃料电池更小,厚度仅为 400 纳米,约为人类头发直径的 1/100。含糖电源每平方厘米产生约 43 微瓦的电力,在环境条件下实现了迄今为止任何葡萄糖燃料电池的最高功率密度。
  • 电池也能用堆叠技术!能量密度提高10%以上 三星 SDI 正计划将新的电池生产工艺应用于手机电池。它是一种“堆叠”技术,将电池的内部材料像楼梯一样一层一层地堆叠起来,堆叠技术首先用于第5代 (Gen 5) 电动汽车电池。通过提高能量密度,增加了电动汽车的行驶里程并降低了成本。
  • 小米发布“小感量+磁吸”无线充电预研技术,最高支持50W 据EDN电子技术设计报道,昨日,@小米手机 官微宣布,正式发布小感量+磁吸”无线充电预研技术,其磁吸无线充电功率最高可达50W,损耗降低50%。据悉,该技术与传统无线充电方案采用大感量线圈不同,小米的小感量无线快充技术方案采用小感知线圈去感应发送端能量。
  • 世界上最小的电池,比一粒盐还小! 智能微尘是微电子和纳米电子领域最有前途的未来技术之一。在最近出版的《Advanced Energy Materials》中,研究人员讨论了如何在亚毫米级实现电池供电的智能粉尘应用,并展示了迄今为止世界上最小的电池作为面向应用的原型。
  • 工程师发现钠离子电池耐用性缺陷的根源 对于电动汽车等新能源应用来说,能量密集、不易燃并且在较低温度下运行良好的钠离子电池是非常有前景的技术,但由于钠离子电池耐用性缺陷问题,它们长期以来都只是磷酸铁锂电池的“备胎”。日前,康奈尔大学的研究人员发现了限制钠离子电池耐用性的长期问题的根源,并于 2 月 1 日发表在《先进能源材料》杂志上。
  • 中科院等高校研究人员设计出新型燃料电池,可在 -20 至 日前,中国科学院、天津师范大学和天津大学的研究人员在Nature Energy上发表文章表示最近设计了一种新型质子交换膜燃料电池(PEMFC),可在更广泛的温度范围内运行,特别是 -20 到 200 摄氏度。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了