广告

三星发现半导体材料新材料,可展现更好的电学性能

2020-07-07 16:52:11 网络整理 阅读:
三星电子宣布,三星先进技术研究院(SAIT)联合蔚山国家科学技术院(UNIST)、英国剑桥大学,发现了一种全新的半导体材料“无定形氮化硼”(amorphous boron nitride),简称a-BN,有望推动下一代半导体芯片的加速发展。

三星电子宣布,三星先进技术研究院(SAIT)联合蔚山国家科学技术院(UNIST)、英国剑桥大学,发现了一种全新的半导体材料“无定形氮化硼”(amorphous boron nitride),简称a-BN,有望推动下一代半导体芯片的加速发展。9Hpednc

无定形氮化硼拥有无固定形状的分子结构,内部包含硼原子、氮原子。它源自白石墨烯,后者也有硼原子、氮原子,不过是六边形结构,无定形氮化硼则与之截然不同。9Hpednc

9Hpednc

三星表示,无定形氮化硼是由白色石墨烯衍生而成的,其中包括以六角形结构排列的硼和氮原子,而a-BN的分子结构使其与白色石墨烯具有独特的区别。9Hpednc

非晶氮化硼具有1.78的同类最佳的超低介电常数,具有强大的电气和机械性能,可以用作互连隔离材料以最大程度地减少电干扰。9Hpednc

该材料还可以在仅400°C的低温下以晶圆级生长。因此,这种新发现的材料有望广泛应用于半导体,例如DRAM,NAND解决方案,用于大型服务器的下一代存储解决方案。9Hpednc

三星技术研究院(SAIT)一直在研究和开发二维(2D)材料-具有单原子层的晶体材料。它一直致力于石墨烯的研究和开发,并在该领域取得了开创性的研究成果。SAIT一直在努力加速材料的商业化。9Hpednc

9Hpednc

附全文:

研究亮点:9Hpednc

  1. 通过控制实验条件,得到了无定形状态的BN材料。
  2. 这种无定形BN具有较好的热稳定性、机械稳定性,并且介电系数较低,符合将来对高性能半导体器件的要求。

研究背景9Hpednc

在电子学器件的发展过程中,电阻的增加和电容延迟是缩减电子学器件尺寸过程中降低电子学器件工作速度的主要原因。缩减连接处金属线连接的尺寸是降低器件尺寸的关键。相互连接的材料需要较低的介电常数用于阻碍金属向半导体中扩散的能垒,并且需要其具有热稳定性、化学稳定性、机械稳定性。the International Roadmap for Devices and Systems建议,到2028年材料的介电常数值需要低于2。目前有些材料的介电常数的数值能达到低于2,但是热稳定性、机械稳定性较低。9Hpednc

拟解决或者拟探索的关键问题9Hpednc

制备能应用于下一代电子学器件中的低介电常数、高稳定半导体材料。9Hpednc

成果简介9Hpednc

有鉴于此,剑桥大学Manish Chhowalla、三星高级技术研究所Hyeon-Jin Shin、国立蔚山科学技术院Hyeon Suk Shin等报道了具有超低介电常数的无定形氮化硼材料。通过控制反应条件,合成了3 nm厚的无定形BN,其介电常数在100 kHz和1MHz中分别低至1.78和1.16,击穿强度达到7.3 MV/cm。9Hpednc

要点1:制备方法9Hpednc

材料生长方法。通过低温远程电感耦合等离子体-化学气相沉积(ICP-CVD)方法在Si基底上进行生长,通过调节温度和plasma功率进行反应参数的优化,结果显示当在400 ℃和30 W plasma中进行生长,能获得介电常数较低的无定形BN材料。在高于该温度时,获得的BN为纳米晶体结构的BN。9Hpednc

9Hpednc

图1. 无定形BN样品材料合成平台(UNIST, SAIT, University of Cambridge, Catalan Institute of Nanoscience and Nanotechnology)。9Hpednc

9Hpednc

图2. BN样品的扫描/透射表征。9Hpednc

要点2:结构表征9Hpednc

相关表征。通过透射电子显微镜方法未发现材料中长程有序,因此作者认为该材料为无定形状态。作者通过XPS表征发现B 1s和N 1s的原子比为1:1.08。通过角分辨近边X射线吸收精细结构NEXAFS测试了无定形BN材料,对1 s核层轨道中电子激发到空π*或σ*轨道的过程中情况进行测试,验证了该材料呈无定形状态。9Hpednc

9Hpednc

图3. BN样品的谱学表征。9Hpednc

要点3:介电性能9Hpednc

介电性能相关测试。通过对metal/BN/n-Si结构的器件进行电流密度-电压(J-V)、电容-频率(C-f)测试,考察了介电常数和击穿电压。通过在Si基底上沉积3 nm厚的无定形BN和TiN,并随后通过80 nm厚的Co进行包覆,通过在真空氛围中加热,考察了器件中的扩散现象。结果显示在苛刻的环境中BN层阻碍了Co金属向Si中的扩散作用,证明无定形BN具有优异的性能。作者对比了无定形BN和六方相BN。9Hpednc

9Hpednc

图4. 无定形BN介电性能。9Hpednc

9Hpednc

表1. 无定形/六方相BN性能比较9Hpednc

小结

这项研究结果表明无定形氮化硼具有超低介电常数。9Hpednc

参考文献9Hpednc

Seokmo Hong, et al. Ultralow-dielectric-constant amorphous boron nitride, Nature 2020, 582, 511-5149Hpednc

DOI:10.1038/s41586-020-2375-99Hpednc

责编:Demi Xia9Hpednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • MIT研究人员发现了一种性能比硅更好的半导体材料 硅是地球上最丰富的元素之一,其纯净形式已成为许多现代技术的基础,从太阳能电池到计算机芯片,但硅作为半导体的特性远非理想。现在,来自 MIT、休斯顿大学和其他机构的一组研究人员发现了一种称为立方砷化硼的材料,这种材料可以克服硅的上述两个限制。其为电子和电洞提供了高迁移率,并具有优良的热导率。研究人员表示,这是迄今为止发现最好的半导体材料,在将来也可能说是最好的材料。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 利用GaN技术在狭窄的环境中保持“冷静” 虽然GaN器件可实现更高的功率密度,但为了实现高可靠性的适销对路的适配器设计,仍有一些系统级问题需要解决。这些问题以散热设计和EMI合规性为中心。适配器内的电子电路必须要在放置它们的狭小空间中保持冷(表现出低温升)静(低发射噪声)。本文将着眼于实现这些目标的技术。
  • 美的威灵电机:两轮车电动力系统技术发展趋势与解决方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,广东威灵电机制造有限公司两轮车项目经理刘海量分享了“两轮车电动力系统技术发展趋势与解决方案”主题演讲。
  • 电动商用车的三种不同充电方案 随着重型或商用车辆的电气化,为比电动乘用车更大的电池充电变得必要。由于时间就是金钱,特别是在物流领域,分配空闲时间进行充电或增加充电功率是首选方案。这导致了三种不同的充电方案。
  • 成本不到一毛钱的塑料芯片,真的能量产吗? 现在研究人员设计了一种新的塑料处理器,他们估计能够以不到一便士(约合人民币0. 082元)的价格大规模生产。根据IEEE Spectrum 的一份报告,新的 Flexicore 芯片可以开启一个世界,从绷带到香蕉,一切都可以拥有芯片。
  • 一种具有触觉感应能力的仿生弹性机器人皮肤 科学家认为,给社交机器人安装类人体皮肤(或触觉传感器),可以实现安全、直观和接触丰富的人机交互。然而,现有的软触觉传感器存在一些缺点,如结构复杂、可扩展性差、易碎,这限制了它们在机器人全身皮肤上的应用。韩国科学技术高等研究院的一组研究人员与麻省理工学院的一位研究人员和斯图加特大学的另一位研究人员合作,开发了一种具有触觉感应能力的仿生弹性机器人皮肤。
  • 25kW SiC直流快充设计指南 (第八部分):散热管理 在本系列的前几篇文章中,我们介绍了基于onsemi丰富的SiC功率模块和其他功率器件开发的25kW EV快充系统。在这一章,我们来看看其中的散热管理部分是如何提高效率和可靠性,同时防止系统过早失效的。
  • EPC CEO Alex Lidow:“志存高远,勇往直前” Bill Collins是我在1977年研究生毕业后加入IR时的战略营销主管。他指导我完成了功率MOSFET及其第二代版本HEXFET的开发。Bill刚满90岁,我们仍然会每隔几个月吃一次午饭。
  • 25kW SiC直流快充设计指南 (第七部分):800V EV充电系 本篇将介绍25kW快充系统中的辅助电源设计。它基于onsemi针对800V母线电压的EV应用所做的一个辅助电源参考设计方案,即SECO-HVDCDC1362-40W-GEVB,它能提供15V/40W的持续输出供电。类似的方案还有SECO-HVDCDC1362-15W-GEVB,它能提供15V/15W的持续输出。
  • 25kW SiC直流快充设计指南(第六部分):用于电源模块的栅 本文的基础是使用安森美新型 SiC 模块构建 25 kW 快速电动汽车充电桩获得的经验。在此设计中,我们将使用安森美的 IGBT 电流隔离栅极驱动器作为起点,并介绍使用新的专用 SiC 电流隔离栅极驱动器进行的改进。本文介绍的所有栅极驱动器系列都采用相同的隔离技术和输出级技术。
  • 麻省理工开发利用人体自身糖分发电的超薄燃料电池 该装置比其他提议的葡萄糖燃料电池更小,厚度仅为 400 纳米,约为人类头发直径的 1/100。含糖电源每平方厘米产生约 43 微瓦的电力,在环境条件下实现了迄今为止任何葡萄糖燃料电池的最高功率密度。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了