广告

Coss滞回损耗在高密度电源适配器应用中的影响

2020-07-02 Nico Fontana,高级应用工程师,英飞凌 阅读:
为什么需要快速充电以及高功率密度?

如今人们比以往任何时候都更依赖电子设备。随着智能手机、平板电脑和笔记本电脑等电子产品的便携化,它们占据了我们日常生活中越来越多的空间和时间。由于能够即时和无缝地接触到世界各地的其他人群和信息,持续、无限和无界的沟通、联系和任务分配已成为生活标配。TCFednc

这对功率半导体行业有何影响呢?这些便携式产品需要依靠电池供电,因此,能够使用它们的根本前提是有充电器或适配器(取决于额定功率)来给它们充电。而这就是微电子技术的用武之地。在确定了需要充电器/适配器来为我们(智能)设备的电池充电之后,下面的问题是:我们愿意花费多少时间在充电上?答案显而易见:越少越好。这正是快速充电越来越受欢迎的原因。但是快速充电只能通过提高充电器/适配器的供电能力来实现。除了充电时间,充电器的重量也是需要重点考虑的因素——因为通常需要随身携带,所以充电器当然是越轻越好。这就是为什么我们需要功率密度更高的充电器/适配器,以便它们能在物理尺寸或重量不增加的情况下输出更大的功率。TCFednc

助力充电器和适配器达到更高功率密度

就一个全封闭的适配器而言,在通过高开关频率或封装创新来缩小尺寸的同时,还必须考虑到效率的提高,以便能够使元器件和适配器外壳维持较低的温度。1以一个65W的适配器为例,展示了功率密度与将适配器外壳温度维持在70℃以下所需最低效率之间的关系。显然,要想将功率密度提高到20W/in3以上,适配器的效率必须达到92.5%以上。通常情况下,对于拥有通用输入电压范围(90Vac-264Vac)的充电器和适配器而言,满足最低效率要求所需的关键工作点参数为:TCFednc

• 最大连续输出功率TCFednc

• 最小输入电压(通常为90VacTCFednc

这其中的原因是,在上述工作点下,传导损耗达到最大,从而使整体效率相比高输入电压的情况变差。TCFednc

TCFednc

图1:就65W适配器而言,功率密度与将适配器外壳温度维持在70℃以下所需最低效率之间的关系。TCFednc

单开关准谐振(QR)反激拓扑在电源适配器应用中受到广泛采用:它的工作模式为非连续导通模式(DCM),能在低输入电压情况下实现零电压开关(ZVS),在高输入电压情况下实现部分硬开关。但是,由于在高输入电压时发生硬开关工作,加上无法回收变压器泄漏能量,因此适配器可以达到的最大开关频率会受到限制。TCFednc

为了克服这些局限,设计人员正在开发具备以下特性的拓扑:TCFednc

• 在任何输入电压和负载情况下实现软开关(ZVS)工作TCFednc

• 回收变压器泄露能量TCFednc

众所周知,有源钳位反激(ACF)是一种能同时满足上述两条要求的拓扑。软开关工作可以避免开通损耗,实现相对较高的开关频率(通常高于120kHz)。此时,剩余的影响MOSFET的主要损耗机制只有关断损耗、传导损耗和所谓的“Coss滞回损耗”——将在下一节中讲述。TCFednc

Coss滞回损耗

如前所述,要想以高密度适配器通常使用的相对较高的开关频率进行高效地工作,必须使用软开关技术。软开关技术能让器件实现零电压开关(ZVS),也即MOSFET只有在漏源电压达到0V(或者接近0V的值)时才能开通。这种模式可以避免在总开关损耗中通常占据主导地位的开通损耗。遗憾的是,由于输出电容的“非无损”特性,所有高压超结(SJ)MOSFET都面临一种额外的损耗。也就是说,当MOSFET输出电容(Coss)经过充电然后再放电时,会有部分能量受到损失,因此即使在ZVS条件下工作,也无法恢复存储在输出电容中的全部能量(Eoss)。这种现象与Coss的滞回特性有关,在0V到100V之间完成一个Coss充放电周期时,借助大信号测量即可观察到这种现象,如2所示。这就是这类损耗通常被称为Coss滞回损耗(简称为Eoss,hys)的原因。TCFednc

TCFednc

图2:Coss的滞回特性。TCFednc

由该损耗机制引起的功率损耗取决于:TCFednc

  • 技术:当芯片尺寸乃至RDS(on)相同时,不同技术的Eoss,hys不同,比如CoolMOS PFD7和CoolMOS P7的Eoss,hys就不同。
  • 击穿电压:对于同样的技术,Eoss,hys随电压等级的提高而增加,也即650V器件的Eoss,hys通常比基于相同技术的600V器件大。
  • 开关频率fsw:由于Coss的充放电周期在每个开关周期内都会发生一次,因此由该损耗机制引起的功率损耗与开关频率(fsw)成正比。
  • RDS(on)等级:这个损耗不仅会影响器件的Coss,而且取决于芯片尺寸,也即对于同样的技术,RDS(on)较小的MOSFET会表现出较大的Eoss,hys损耗。

600V CoolMOS PFD7与CoolMOS P7相比,Coss滞回损耗降低了41%,从而使软开关应用中的效率得到显著提升。TCFednc

MOSFET损耗的主要来源

为了更好地估计Coss滞回损耗对最终应用的影响,可以通过仿真和计算来确定击穿损耗。3以基于ACF拓扑的65W适配器为例,显示了在低输入电压和满载情况下(如前所述,从壳温的角度来看,这是适配器最为关键的工作点),不同损耗机制对高边(HS)和低边(LS)MOSFET总损耗的影响。ZVS经过优化,可以降低总系统损耗,即在25V时导通低边MOSFET(部分ZVS模式),而高边MOSFET工作在完全ZVS模式下。TCFednc

TCFednc

图3:就65W适配器而言,不同损耗机制对高边(HS)和低边(LS)MOSFET总损耗的影响。TCFednc

从图中可以看出,当高边和低边开关都使用120mΩ 600V CoolMOS P7(IPA60R120P7)SJ MOSFET时,Coss滞回损耗占MOSFET总损耗(高边+低边)的44%,而传导损耗以40%的占比成为第二大的影响机制。包括栅极驱动损耗以及开通和关断损耗在内的所有其他损耗机制,在总损耗中的占比只有不到20%。TCFednc

在已经确定Coss滞回损耗对低输入电压和满载条件下的效率有重大影响,且将600V CoolMOS PFD7针对这些损耗进行了专门优化之后,接下来自然是将CoolMOS P7(IPA60R120P7)替换成新的CoolMOS PFD7(IPAN60R125PFD7S),以便对应用中的实际损耗降低进行量化。TCFednc

3所示,将CoolMOS P7替换成PFD7后,器件总损耗降低了22%(0.33W),这对适配器的最终效率有非常积极的影响。TCFednc

实验结果

为了用实验验证用CoolMOS PFD7替换CoolMOS P7可以降低MOSFET的损耗,我们在低输入电压和约155kHz的开关频率下,对ACF测试板进行了全面的测量。4所示为CoolMOS P7与CoolMOS PFD7之间的效率差别:可以看出,CoolMOS PFD7在整个负载范围内具有明显的效率优势。这两种技术之间的效率差别在轻载情况下变得更大,但随电流的增大而变小。这是因为,虽然Coss滞回损耗对MOSFET总损耗的影响与负载无关,但传导损耗却与负载有关。因此,在轻载情况下,Coss滞回损耗较小的MOSFET,效率所受的影响更加明显。TCFednc

TCFednc

图4:CoolMOS P7与CoolMOS PFD7之间的效率差别。TCFednc

现在从壳温的角度考虑最关键的工作点,如前所述,即满载、低输入电压(90Vac)的情况,CoolMOS PFD7在该工作点下的效率可以提升0.34%,这可使MOSFET壳温降低5℃,从而降低适配器外壳过热的风险。效率提高带来的另一个结果如5所示。图中绘出了假设适配器外壳最高温度为70℃时,CoolMOS PFD7和P7所能达到的功率密度极限。由于效率提高,PFD7可将最高功率密度极限提高到20W/in3以上,比P7提高1.8W/in3TCFednc

TCFednc

图5:通过CoolMOS PFD7实现的功率密度提升。TCFednc

600V CoolMOS PFD7

如前文所述,Coss滞回损耗对适配器应用的效率乃至功率密度都有显著影响。600V CoolMOS PFD7的Coss滞回损耗降低,因而效率更高。此外,由于它面向的是消费类市场,所以它的价格已针对该市场进行了调整。TCFednc

(原文标题:Impact of Coss hysteresis losses in high-density adapter applications)TCFednc

本文为《电子技术设计》2020年7月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里TCFednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 电晕女生的美的电热水器,其构造原理是怎样的? 电热水器把女生电晕了?近日,发生了美的电热水器电晕女生的事故,而今日美的的回应让业界一片哗然,还上了热搜。那么,我们来看看事情的经过,然后分析一下电热水器的构造原理,到底是什么把女生电晕了?
  • 盘古团队发现苹果安全芯片不可修复漏洞,iOS14可越狱,iPh 苹果自从跨入iOS14时代,好久没有传出越狱的消息,上次还是2018年9月iPhone XS的iOS12越狱,不过,最近的2020 Mosec移动安全技术峰会上,国内越狱团队盘古在最新的iPhone11 Pro上演示了越狱。
  • 学会喜欢高压运算放大器IC 不久以前,要调整运算放大器来提供大约50V或更高的电压还是一项挑战。幸运的是,在最近几年中,IC供应商努力克服了将模拟器件限制在较低电压下的工艺限制。
  • 专属AC/DC转换器:安全保障还是捆绑消费? 当需要匹配的4.5×3.0mm插头缺货时,我感到很失望。向店员解释了我的情况,他告诉我,即使他们有合适的库存,也没有用,因为这装置仍然不会运作…我感到迷惑不解,直到他解释说较新的戴尔设备具有内部第三线连接,该连接允许戴尔(和笔记本电脑)验证适配器是否为戴尔原厂设备…
  • 英伟达RTX 系列3090跑分 比 2080 Ti 性能超50%,超频潜 英伟达的显卡是当今计算机世界当之无愧的霸主,最新的英伟达 RTX 3090 显卡更是被爆性能大涨50%。
  • 面向智能交通基础设施的模块化边缘计算技术 专为边缘应用打造的系统要求具备高度灵活性。这需要可扩展的处理能力,而采用嵌入式计算机模块是最为高效的实现方式。从智慧城市LoRa网关到智能充电基础设施和视频监控服务器,三种实际应用均搭配可选AI技术,以展现这种模块化设置的优势。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了