广告

Coss滞回损耗在高密度电源适配器应用中的影响

2020-07-02 10:35:19 Nico Fontana,高级应用工程师,英飞凌 阅读:
为什么需要快速充电以及高功率密度?

如今人们比以往任何时候都更依赖电子设备。随着智能手机、平板电脑和笔记本电脑等电子产品的便携化,它们占据了我们日常生活中越来越多的空间和时间。由于能够即时和无缝地接触到世界各地的其他人群和信息,持续、无限和无界的沟通、联系和任务分配已成为生活标配。GRBednc

这对功率半导体行业有何影响呢?这些便携式产品需要依靠电池供电,因此,能够使用它们的根本前提是有充电器或适配器(取决于额定功率)来给它们充电。而这就是微电子技术的用武之地。在确定了需要充电器/适配器来为我们(智能)设备的电池充电之后,下面的问题是:我们愿意花费多少时间在充电上?答案显而易见:越少越好。这正是快速充电越来越受欢迎的原因。但是快速充电只能通过提高充电器/适配器的供电能力来实现。除了充电时间,充电器的重量也是需要重点考虑的因素——因为通常需要随身携带,所以充电器当然是越轻越好。这就是为什么我们需要功率密度更高的充电器/适配器,以便它们能在物理尺寸或重量不增加的情况下输出更大的功率。GRBednc

助力充电器和适配器达到更高功率密度

就一个全封闭的适配器而言,在通过高开关频率或封装创新来缩小尺寸的同时,还必须考虑到效率的提高,以便能够使元器件和适配器外壳维持较低的温度。1以一个65W的适配器为例,展示了功率密度与将适配器外壳温度维持在70℃以下所需最低效率之间的关系。显然,要想将功率密度提高到20W/in3以上,适配器的效率必须达到92.5%以上。通常情况下,对于拥有通用输入电压范围(90Vac-264Vac)的充电器和适配器而言,满足最低效率要求所需的关键工作点参数为:GRBednc

• 最大连续输出功率GRBednc

• 最小输入电压(通常为90VacGRBednc

这其中的原因是,在上述工作点下,传导损耗达到最大,从而使整体效率相比高输入电压的情况变差。GRBednc

GRBednc

图1:就65W适配器而言,功率密度与将适配器外壳温度维持在70℃以下所需最低效率之间的关系。GRBednc

单开关准谐振(QR)反激拓扑在电源适配器应用中受到广泛采用:它的工作模式为非连续导通模式(DCM),能在低输入电压情况下实现零电压开关(ZVS),在高输入电压情况下实现部分硬开关。但是,由于在高输入电压时发生硬开关工作,加上无法回收变压器泄漏能量,因此适配器可以达到的最大开关频率会受到限制。GRBednc

为了克服这些局限,设计人员正在开发具备以下特性的拓扑:GRBednc

• 在任何输入电压和负载情况下实现软开关(ZVS)工作GRBednc

• 回收变压器泄露能量GRBednc

众所周知,有源钳位反激(ACF)是一种能同时满足上述两条要求的拓扑。软开关工作可以避免开通损耗,实现相对较高的开关频率(通常高于120kHz)。此时,剩余的影响MOSFET的主要损耗机制只有关断损耗、传导损耗和所谓的“Coss滞回损耗”——将在下一节中讲述。GRBednc

Coss滞回损耗

如前所述,要想以高密度适配器通常使用的相对较高的开关频率进行高效地工作,必须使用软开关技术。软开关技术能让器件实现零电压开关(ZVS),也即MOSFET只有在漏源电压达到0V(或者接近0V的值)时才能开通。这种模式可以避免在总开关损耗中通常占据主导地位的开通损耗。遗憾的是,由于输出电容的“非无损”特性,所有高压超结(SJ)MOSFET都面临一种额外的损耗。也就是说,当MOSFET输出电容(Coss)经过充电然后再放电时,会有部分能量受到损失,因此即使在ZVS条件下工作,也无法恢复存储在输出电容中的全部能量(Eoss)。这种现象与Coss的滞回特性有关,在0V到100V之间完成一个Coss充放电周期时,借助大信号测量即可观察到这种现象,如2所示。这就是这类损耗通常被称为Coss滞回损耗(简称为Eoss,hys)的原因。GRBednc

GRBednc

图2:Coss的滞回特性。GRBednc

由该损耗机制引起的功率损耗取决于:GRBednc

  • 技术:当芯片尺寸乃至RDS(on)相同时,不同技术的Eoss,hys不同,比如CoolMOS PFD7和CoolMOS P7的Eoss,hys就不同。
  • 击穿电压:对于同样的技术,Eoss,hys随电压等级的提高而增加,也即650V器件的Eoss,hys通常比基于相同技术的600V器件大。
  • 开关频率fsw:由于Coss的充放电周期在每个开关周期内都会发生一次,因此由该损耗机制引起的功率损耗与开关频率(fsw)成正比。
  • RDS(on)等级:这个损耗不仅会影响器件的Coss,而且取决于芯片尺寸,也即对于同样的技术,RDS(on)较小的MOSFET会表现出较大的Eoss,hys损耗。

600V CoolMOS PFD7与CoolMOS P7相比,Coss滞回损耗降低了41%,从而使软开关应用中的效率得到显著提升。GRBednc

MOSFET损耗的主要来源

为了更好地估计Coss滞回损耗对最终应用的影响,可以通过仿真和计算来确定击穿损耗。3以基于ACF拓扑的65W适配器为例,显示了在低输入电压和满载情况下(如前所述,从壳温的角度来看,这是适配器最为关键的工作点),不同损耗机制对高边(HS)和低边(LS)MOSFET总损耗的影响。ZVS经过优化,可以降低总系统损耗,即在25V时导通低边MOSFET(部分ZVS模式),而高边MOSFET工作在完全ZVS模式下。GRBednc

GRBednc

图3:就65W适配器而言,不同损耗机制对高边(HS)和低边(LS)MOSFET总损耗的影响。GRBednc

从图中可以看出,当高边和低边开关都使用120mΩ 600V CoolMOS P7(IPA60R120P7)SJ MOSFET时,Coss滞回损耗占MOSFET总损耗(高边+低边)的44%,而传导损耗以40%的占比成为第二大的影响机制。包括栅极驱动损耗以及开通和关断损耗在内的所有其他损耗机制,在总损耗中的占比只有不到20%。GRBednc

在已经确定Coss滞回损耗对低输入电压和满载条件下的效率有重大影响,且将600V CoolMOS PFD7针对这些损耗进行了专门优化之后,接下来自然是将CoolMOS P7(IPA60R120P7)替换成新的CoolMOS PFD7(IPAN60R125PFD7S),以便对应用中的实际损耗降低进行量化。GRBednc

3所示,将CoolMOS P7替换成PFD7后,器件总损耗降低了22%(0.33W),这对适配器的最终效率有非常积极的影响。GRBednc

实验结果

为了用实验验证用CoolMOS PFD7替换CoolMOS P7可以降低MOSFET的损耗,我们在低输入电压和约155kHz的开关频率下,对ACF测试板进行了全面的测量。4所示为CoolMOS P7与CoolMOS PFD7之间的效率差别:可以看出,CoolMOS PFD7在整个负载范围内具有明显的效率优势。这两种技术之间的效率差别在轻载情况下变得更大,但随电流的增大而变小。这是因为,虽然Coss滞回损耗对MOSFET总损耗的影响与负载无关,但传导损耗却与负载有关。因此,在轻载情况下,Coss滞回损耗较小的MOSFET,效率所受的影响更加明显。GRBednc

GRBednc

图4:CoolMOS P7与CoolMOS PFD7之间的效率差别。GRBednc

现在从壳温的角度考虑最关键的工作点,如前所述,即满载、低输入电压(90Vac)的情况,CoolMOS PFD7在该工作点下的效率可以提升0.34%,这可使MOSFET壳温降低5℃,从而降低适配器外壳过热的风险。效率提高带来的另一个结果如5所示。图中绘出了假设适配器外壳最高温度为70℃时,CoolMOS PFD7和P7所能达到的功率密度极限。由于效率提高,PFD7可将最高功率密度极限提高到20W/in3以上,比P7提高1.8W/in3GRBednc

GRBednc

图5:通过CoolMOS PFD7实现的功率密度提升。GRBednc

600V CoolMOS PFD7

如前文所述,Coss滞回损耗对适配器应用的效率乃至功率密度都有显著影响。600V CoolMOS PFD7的Coss滞回损耗降低,因而效率更高。此外,由于它面向的是消费类市场,所以它的价格已针对该市场进行了调整。GRBednc

(原文标题:Impact of Coss hysteresis losses in high-density adapter applications)GRBednc

本文为《电子技术设计》2020年7月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里GRBednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 如何实现最精确的授时和同步? 在为关键基础设施制定PNT解决方案时,运营商必须做出两个最关键的决策:1) 是否应在架构的每一层上部署弹性、冗余和安全性?2) 应采用哪种安全策略?
  • 如何在高压应用中利用反相降压-升压拓扑 对于需要生成负电压轨的应用,可以考虑多种拓扑结构,如“生成负电压的艺术”一文所述。但是,如果输入和/或输出端的绝对电压超过24V,并且所需的输出电流可以达到几安,则充电泵和LDO负压稳压器将会因其低电流能力被弃用,而其电磁组件的尺寸,会导致反激式和Ćuk转换器解决方案变得相当复杂。因此,在这种条件下,反相降压-升压拓扑能在高效率和小尺寸之间达成较好的折衷效果。
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 电化学腐蚀制备新技术发表,“一步到位”制作电池电极 据了解,天津大学“英才计划”特聘研究员吉科猛团队联合湖南大学谭勇文教授团队利用钴磷合金研发出了仅用一步即可制成电池电极的电化学腐蚀制备技术,该相关研究成果将于近日发表在国际期刊《先进材料》上。
  • 金升阳汽车电子一站式电源解决方案 金升阳汽车电子一站式电源解决方案
  • 满足车规级、医规级的芯片级DC/DC电源——B0505ST16-W 金升阳推出芯片级隔离电源产品B0505ST16-W5,为高端芯片应用助力。金升阳芯片级电源B0505ST16-W5采用新一代自主研发技术,电路技术和电气性能都有质的提高,在汽车电子等领域,朝着小型化、功能集成化的方向迈进。
  • 实现测试测量突破性创新,采用ASIC还是FPGA? 作为世界创新的幕后英雄,特别是在电子器件和通信技术方面,工程师们要开发测试设备,验证这些新技术,以把新技术推向市场。这些工程师必须运行尖端技术,处理预测行业和创新未来的挑战。在开创未来的过程中,测试测量工程师面临的基础性创新挑战之一,是确定设计中采用专用集成电路(ASIC)还是现场可编程门阵列(FPGA)。
  • 大联大品佳集团推出基于Infineon iMotion产品的冰箱 大联大控股宣布,其旗下品佳推出基于英飞凌(Infineon)IMC101T的冰箱压缩机方案。
  • 低功耗“刚需”加速物联网应用落地,用独特MCU设计的省 低功耗MCU涉及的关键技术和设计挑战非常多,从如何定义系统架构、构建平台和MCU生态系统到数字电路设计,从工艺的选择到模拟电路设计,从可靠性设计到低功耗设计,从应用创新到满足客户各种需求等,每方面都对设计公司提出很高要求……
  • 无线充解决方案 SCT6324X系列是一款高度集成的电源管理IC,能够实现符合WPC规范的无线电源发射器系统的高性能、高效率和成本效益,以支持高达20W的功率传输,适用特定于无线应用程序的控制器或基于通用MCU的发射器控制器。
  • 谈谈智能舱座应用 智能舱座的出现体现了人们对于智能汽车的向往,注重车内感知系统和交互模式,那么随着车内感知系统和交互模式的升级,对车规级芯片的需求与要求日益增长。
  • 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品 芯海科技聚焦汽车电子未来发展,着力打造全场景应用产品生态
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了