广告

Chiplet技术还能怎么玩?台积电、imec这样说……

2021-03-11 Don Scansen,EE Times专栏作者 阅读:
积电是从“后摩尔定律”(More Moore,MM)与“超越摩尔定律”(More than Moore,MtM)两个面向来推动尖端半导体制程的演进。在MM的部份,余振华的简报提及数个Chiplet方法的关键驱动力……

接续前文:《AMD分享Chiplet设计案例:改善单颗良品裸晶成本成最大“卖点”L6eednc

除非拥有一个完整且开放的生态系统,Chiplet仍然只会是少数顶尖芯片大厂会采用的解决方案,而晶圆代工业者将扮演一个关键角色;对此台积电(TSMC) Pathfinding for System Integration副总经理暨卓越科技院士余振华(Douglas Yu),在2021年国际固态电路会议(ISSCC)的Chiplet论坛上分享了台积电的规划。L6eednc

台积电是从“后摩尔定律”(More Moore,MM)与“超越摩尔定律”(More than Moore,MtM)两个面向来推动尖端半导体制程的演进。在MM的部份,余振华的简报提及数个Chiplet方法的关键驱动力,如高性能运算(HPC)芯片的尺寸,与数位逻辑不同步的I/O微缩,以及重复使用IP以加速产品上市时程。最后一点尤其重要,将众多功能划分为不同的小芯片(即Chiplet),能让专属的设计团队维持自己的最佳开发进度。 L6eednc

L6eednc

台积电从三个方向维持半导体技术创新,理想的模式是同步进行并相互合作。(图片来源:ISSCC 2021)L6eednc

不过Chiplet的焦点在于MtM。台积电积极投入高阶封装技术已有好一段时间,其扇出式晶圆级封装(InFO),在2016年获得苹果(Apple)的A10应用处理器采用,成为颠覆手机芯片的技术。台积电将前段制程3D (即SoIC硅堆叠技术)与后段制程3D (InFo与CoWoS等先进封装技术)整合在新命名的“3DFabric”平台之下。L6eednc

L6eednc

台积电的SoIC提供互连性能更佳的芯片3D堆叠方法。(图片来源:ISSCC 2021) L6eednc

台积电并在Chiplet论坛提出针对未来芯片3D整合趋势的“3D ID”(3D interconnect density)定律,也就是SiP系统中,芯片间水平连线最高密度x垂直连线最高密度的3D芯片互连密度,会以每两年增加两倍的速度演进。(更多相关内容请参考:微缩、封装并进台积电突破技术极限)L6eednc

L6eednc

台积电的3DID定律。(图片来源:ISSCC 2021)L6eednc

来自研究机构imec的观点L6eednc

考虑到台积电在简报中提到的芯片互连密度(3DID定律),值得更近一步检视能快速预测技术进展的一些研发成就。在3D IC领域的知名研究者,比利时研究机构imec资深研究员暨研发副总裁,以及3D系统整合技术专案总监Eric Beyne在ISSCC 2021深入探讨了将在未来3D整合领域扮演决定性角色的技术。L6eednc

L6eednc

imec3D互连技术蓝图。(图片来源:ISSCC 2021)L6eednc

在3D互连技术方面,3D互连覆盖的范围从1毫米(mm)以下的堆叠封装──如POP (package-on-package)──到100奈米(nm)以下采用电晶体堆叠的真正3D IC。在后者,互连密度超越108/mm 2,换句话说,今日采用的典型制造技术还有许多可以进步的空间。以imec的观点来看,芯片3D整合有以下三大关键元素:L6eednc

  • 硅穿孔(Through-silicon-via,TSV);
  • 裸晶(die)对裸晶、裸晶对晶圆堆叠与互连;
  • 晶圆对晶圆键合(bonding)与互连技术。

Beyne指出,研究结果展现了TSV微缩的良好前景,不过商业产品中的通孔(via)仍维持静态,问题在于“互连间隙”(interconnect gap)。微凸块(microbump,μbump)还未能达到充分利用TSV的程度,有必要进行更积极的微缩。L6eednc

L6eednc

imec表示,微凸块需要非常积极的微缩才能跟上TSV的密度。(图片来源:ISSCC 2021)L6eednc

 L6eednc

imec的团队正在努力改善微凸块的密度,Beyne展示了透过热压键合(thermocompression bonding)将焊锡凸块间距缩小至7微米(μm)以下。扫描电子显微镜(SEM)显示了一个堆叠4颗裸晶、7μm 间距的TSV凸块/互连范例,显然imec希望产业界了解其机会所在,以及需要让微凸块能跟上TSV技术的发展速度。L6eednc

(原文发表于ASPENCORE旗下EDN姐妹媒体EETimes,参考链接:AMD, TSMC & Imec Show Their Chiplet Playbooks at ISSCC,By Don Scansen,编译:Judith Cheng)L6eednc

责编:DemiL6eednc

本文为EDN电子技术设计 原创文章,禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 会“IPO“还是”被收购“?Kioxia的技术到底强在哪里?在 尽管存储巨头们心中都期盼更紧密的整合,但如Kioxia若收购成功,日本似乎就没有留下什么大的存储公司,全球闪存业务掌控在美/韩两国手中也震动行业竞争格局与发展,最可能出现的结果可能还是希望Kioxia在适当的节点进行IPO吧
  • Nexperia扩展LFPAK56D MOSFET产品系列,推出符合AEC-Q10 节省空间的LFPAK56D半桥产品可以帮助动力系统、电机控制和DC/DC应用减少60%的寄生电感并改善散热性能
  • 高通公司可能会开发更强大的ARM计算机芯片与苹果竞争 目前,高通采用ARM现有核心设计,并在芯片中实现。随着骁龙888的推出,情况几乎没有改变,但看起来苹果5nm M1芯片给高通带来最终推动力。高通收购Nuvia可以帮助其创建定制核心设计,而不是获得授权使用现有的核心设计。
  • “光子替代电子”颠覆半导体行业:盘点硅光市场的玩家们 尽管日前思科以26亿美元收购硅光子公司Acacia一案再生变数,且双方争执的理由居然是“是否在合并协议规定的期限内获得中国国家市场监督管理总局(SAMR)的批准”,但不可否认的是,随着摩尔定律脚步的放缓,将光子和集成电路中的电子结合在一起,甚至是用光子替代电子形成“片上光互联”,以实现对现有光模块产业链的重塑,正成为半导体行业数个“颠覆式创新”中的重要方向之一。
  • 超宽带(UWB)技术基础及其测试方法 超宽带(UWB)技术是一种利用纳秒级的窄脉冲进行数据传输的无线通信技术。它既不同于传统的窄带通信技术,也不同于广泛用于宽带通信的OFDM技术,UWB信号的超大带宽和极低功率对测试方法和测试仪表提出了新的需求和挑战
  • 一种陶瓷贴片电容失效率以及寿命的评估方法 随着陶瓷贴片电容朝着小型化、大容量的趋势发展,陶瓷电容的规格越来越极限,设计余量也越来越小。近年来,在陶瓷电容选型阶段,用户也越来越关注电容的失效率和寿命。 本文分别介绍了用于评估偶然失效阶段失效率和损耗失效阶段寿命的方法,两种方法同步运用,能够有效对陶瓷电容的可靠性进行综合评估。文章举例计算了某品牌规格为X7S-6.3V-47μF±20%-1210电容的失效率和寿命,结果显示该规格电容在100℃、3.3V条件下偶然失效阶段的失效率为7Fit,此条件下寿命约为8.1年。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了