广告

在不使用变压器的大功率系统设计中应注意什么?

2021-05-18 10:44:03 Power Electronics News编辑团队 阅读:
虽然不使用庞大、笨重而又昂贵的变压器的电源架构设计是一项电子技术挑战,但这种设计却能为很多应用节省空间。我们来看看如何在不使用变压器的情况下设计大功率系统。

不带变压器的电源使用容抗理论来降低输入交流电网电压。实际上,应记住,电网提供230VAC(或110VAC,取决于居住国家)的交流电压,而输出电压必须连续且尽可能平整。zetednc

 zetednc

对于小功率应用不会有任何问题,但是对于大电流情况,电源的效率可能会降低。其基本理念主要是使用高压电容器将电网电压降低到所需水平。电路输出端的电流与电容器的电抗成正比(当然也与电容器的容量成正比)。因此,可以简单地通过并联连接多个电容器或使用容量非常大的电容器来增加输出电流。但是,这样做有可能产生非常大的初始峰值电流,进而导致严重问题。zetednc

原理图

图1给出了无变压器电源的示意图,该电源将电压从230VAC降低到12VDC,理论输出电流为1A。这个原型仅用于对电源进行实验,不能用于敏感系统,例如医疗或安全设备。实际上,其输入和输出之间没有隔离。但是,对于一般的应用,其功能可以保证。所使用的电子元器件如下:zetednc

C1:33,000µF、25VL极化电解电容器zetednc

C2:≥400V、10µF的非极化聚酯电容器zetednc

C3:≥400V、10µF的非极化聚酯电容器zetednc

D1:二极管1N4007zetednc

D2:12V、3W齐纳二极管zetednc

D3:二极管1N4007zetednc

D4:二极管1N4007zetednc

D5:二极管1N4007zetednc

D6:二极管1N4007zetednc

D7:二极管1N4007zetednc

D8:二极管1N4007zetednc

D9:二极管1N4007zetednc

D10:二极管1N4007zetednc

D11:二极管1N4007zetednc

D12:二极管1N4007zetednc

D13:二极管1N4007zetednc

R1:1Ω、5W电阻zetednc

R2:10Ω电阻——负载电阻,不小于10Ωzetednc

R3:470kΩ、1W电阻zetednc

R4:1Ω、5W电阻zetednc

R5:200mA熔断器zetednc

每个电子元器件都有其特定的功能。该电路的工作机制非常明确:zetednc

230VRMS交流电通过C2和C3所组成的限幅器。R3可以在电路未上电时对电容器放电。zetednc

1N4007二极管超级电桥(D10、D11、D6、D7、D1、D4、D3、D5、D9、D8、D12和D13)对电压进行整流,将负半波转换为正半波。这里的二极管数量非常多,这样可以分散功率、减少热量,从而使其保持在元器件制造商所规定的范围内。zetednc

R1和R4用于稍微限制电流,以防在交流信号过零期间电容器的阻抗非常低。zetednc

200mA R5熔断器用于保护齐纳二极管免受过大电流的影响。如果负载发生故障,则有可能遇到这种情况。该电路假定恒定存在10Ω负载。zetednc

zetednc

1变压器的12V1A电源接线图zetednc

 zetednc

电流、电压和功率分析

 zetednc

现在来检查一下电路在其正常工作期间的动态工作情况。必须从一开始就将10Ω负载连接到系统。在经过大约1s(大容量电解电容器C1充电的时间)的短时瞬变之后,电源开始工作。如图2所示,这时输出端及负载上的电压稳定在12V。zetednc

zetednc

2:电源工作期间负载上的电压为12Vzetednc

从这一刻起,负载(10Ω)流过的电流约为1.2A,也即吸收功率为14.3W。现在来检查一下最关键元器件的电压、电流和功率值。聚酯电容器C2和C3上的电压相当高,峰值电压约为320V,如图3的波形图所示。因此,不能使用200VL的非极化电容器,而必须将这个值提高到至少400VL,如果是630VL则更好。该电容组的总电容为20µF。zetednc

zetednc

3:输入限幅聚酯电容器上的电压zetednc

相反,图4所示的曲线图显示了每个二极管1N4007上流过的电流。1N4007的数据手册指出,即使脉冲电流更大,但该器件所能承受的最大电流等于1A。在任何情况下,它都在最大限值以内,这恰恰是因为并联使用了大量半导体器件。zetednc

zetednc

4:流过每个二极管的电流都控制该器件所支持的最大限值以内zetednc

齐纳二极管上的峰值电流为150mA,平均值为34mA,有效值(RMS)为63mA。因此,在输出处插入正确的负载后,该器件保持在低温状态,可以正常工作而不会有任何问题。如图5所示,流过安全电阻R1和R4(都为1Ω)的电流近似为2A峰值的正弦波。其RMS值约为1.4A,因此这两个器件的最小功耗大约为3W。该电流的波形(以及这两个电阻上的相对电压波形)不是完美的正弦波,而是由于二极管的压降,在过零点处会产生抵消——实际上是种交越失真。zetednc

zetednc

5:流过安全电阻R1R4的电流zetednc

输出处的纹波信号

如图6所示,纹波在可接受的水平。其峰-峰值约为92mV,对应于0.75%,这对于不太复杂的负载类型来说是个完全可接受的值。当然,纹波频率等于100Hz。zetednc

zetednc

6:输出信号受纹波信号的影响很小zetednc

 zetednc

关闭电路要小心

当电路关闭时,电容器C2和C3可能会保持很长时间的充电状态,因此必须格外小心。因此,建议将470kΩ的电阻与上述高压电容器并联,如图1的接线图所示。在正常工作条件下,其功耗约为110mW,因此不会影响电路的正常工作。但是,在没有电的情况下,该电阻器会在大约50s内使电容器完全放电,而在20s后,电路就不再具有危险性(请参见图7中的曲线图)。zetednc

zetednc

7:当电路关闭时,与电容器C2C3并联的电阻R3会使它们放电zetednc

效率

此电路的效率并不是支持这种电源的要点之一,过多的散热会大大降低最终产出。以下简化的效率计算给出了输出功率和输入功率之间的关系:zetednc

zetednc

因此,zetednc

zetednc

最终的效率为69%——我们当然不能谈最大效率。zetednc

这种电源的实现并不方便zetednc

考虑到所有潜在的问题,可以说用传统或开关式变压器实现电源比用这种方式设置电路更方便(见图8中的实现示例)。负面影响很多,可以总结如下:zetednc

大容量、高电压聚酯电容器的成本与1A小型变压器的成本相当,甚至更高。此外,电解电容器的成本很高。zetednc

电路未与输入网络隔离,因此会有潜在的危险。此外,有一个元件脱落或损毁,就可能导致整个设备发生损坏。zetednc

效率不是很高,因此不方便进行这么多的妥协。zetednc

最大输出电流约为1A,这与需要20A或30A的电阻性或电感性负载相去甚远。zetednc

zetednc

8变压器电源设计的一种可能实施图zetednc

结论

无变压器电源电路有许多缺点,不能用于精密和关键用途。这种电路无法提供大电流,并且输出未与高压输入隔离。除了会出现电压峰值以外,由于50Hz或60Hz的交流电,电容器还可能会吸收大电流,因此对整个电路存在潜在危险。无论如何,虽然在实践中选择这种解决方案不太方便,但是了解这种电源的基础理论总是有用的。zetednc

本文转载自EDN姊妹网站《电子工程专辑》,原文链接:Power Supply Design Notes: High-Current Transformerless Power Supplyzetednc

责编:Jenny Liaozetednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 波兰网友拆德国产电源插排,内部竟是中国制造?! 本文将会介绍LogiLink LPS262U电源插排(接线板)——包含三个USB端口和两个Schuko插座——的内部结构及其简短测试。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 仿真器智能,工程师更聪明! 不要过度依赖SPICE仿真器的自动设定,因为过度相信自动化有时可能引发错误。请记得:仿真器智能,工程师更聪明!
  • 【领优秀论文集】Cadence 用户大会已开放注册
  • 儿童电子学(二):电容器 电容器是最重要的电气元件之一,我们将在儿童基础电子课程的第二部分了解它的工作原理我们将从储能功能方面对其进行探索,所进行的测试和实验将侧重于这一要素。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
  • Cadence中国区线上用户大会-2022 会议将集聚Cadence的技术用户、开发者与业界专家,涵盖最完整的先进技术交流平台,从IP/SoC设计、验证仿真、系统分析及多物理场仿真、计算流体力学,到封装和板级设计的全流程的技术分享, 以及针对自动驾驶、人工智能、网络和5G/6G、云服务等创新应用的客户案例分享。您也将有机会和开发Cadence工具和IP的技术专家们进行对话。与此同时,还有丰富礼品等您来赢。 新的故事总会在盛夏开始序曲,新的灵感也极有可能于技术交流中迸发。
  • EA Elektro-Automatik代表与中国驻德大使共商中国市 EA Elektro-Automatik受邀参加主题为“变革中的贸易?不确定性时代的中德经济关系展望”的高层外贸战略论坛,为公司在中国市场实现重要增长进行规划并奠定基础。
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 拆解一个中国产的“树莓派”开发笔记本,售价279美元值 “树莓派”在全球市越来越受欢迎,甚至有家长开始让孩子用树莓派学习开发产品。有中国厂商嗅到,率先开发出了基于“树莓派”笔记本——CrowPi L ,外观看和普通笔记本差不多, 但却是基于树莓派Raspberry Pi 4B 开发板的套件,专为 STEM 教育而设计,带有可选的电子模块和教程。EDN发现有外媒对其进行了拆解,接下来将这篇拆解文章分享给大家:
  • 波兰网友测试拆解中国产手电筒/手提灯,会不会发起客诉? 本文将对中国制造的COB LED HP1807带移动电源的手提灯/手电筒的内部(包括电池容量)进行简短的测试和分析。在本主题中,我还将展示其电路板上连接的详细草图,这实际上也构成了其原理图。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了