广告

在SiC FET的帮助下再次发现完美开关

2021-06-25 11:39:43 UnitedSiC公司 阅读:
完美的半导体开关一直是功率设计师的梦想,而SiC FET是目前最接近的选择。

摘要

完美的半导体开关一直是功率设计师的梦想,而SiC FET是目前最接近的选择。kFIednc

kFIednc

有趣的是,有时候,事情是进步还是恶化取决于人们的视角。从人们利用电以来,就存在完美开关,至少18世纪的伏打等实验者们是如此认为的,他们以铜、木头和陶瓷为材料制造了一个电绝缘器件。它在闭合时几乎没有任何电阻,在断开时几乎没有任何漏电。只要体积足够大,它可以经受任何高压。完美开关不成问题。kFIednc

半导体让我们离开了完美开关

真空管是首个电子开关,它体积大、损耗高且脆弱,而早期的晶体管距离理想开关又远了一步,它电阻高、击穿电压低,不过,当然,它的开关速度比任何机械器件都要快得多。这两种开关的体积小,因而只能处理微小的电流。在肖克利及其团队发现晶体管后的75年中,工程师们努力实现像伏打的开关一样的理想解决方案,同时他们不得不让开关以MHz的频率更快地开关,维持小体积并提高额定电流。kFIednc

推动晶体管向着更高功率电平发展的应用当然是开关模式的供电,它可在没有电动发电机组的情况下高效实现直流功率转换。1959年,SMPS概念获得专利,1970年,双极面结型晶体管(BJT)首次应用于商业应用中,也就是Tektronix 7000系列示波器。它在该应用中取得了成功,但是在更高的功率下会难以高效驱动,且除非频率为几十kHz,否则开关损耗难以接受。早在1960年,快速且易于驱动的MOSFET就获得了专利,但是早期的版本有显著的导通电阻,由于I2R中的平方效果,这会在大电流下产生大功耗。不过IGBT的发明则是一个突破,它完美结合了MOSFET的简单栅极驱动与BJT的通态特性。直至今日,它仍然是极高功率转换器的实用解决方案。不过,实用并不意味着理想。为避免极高功率应用中出现不可接受的动态损耗,IGBT的开关频率必须维持在大约10KHz下,因而必须使用大体积、大重量且昂贵的磁性元件。与此同时,可在500kHz左右开关的MOSFET得到改进,产生了最新的“超结”类型,该类型现在主导了直流转换和交直流转换的中低功率范围应用。kFIednc

kFIednc

现代功率半导体的大致应用领域kFIednc

为了弥补IGBT和硅MOSFET应用领域之间的差距,人们探索了以碳化硅和氮化镓为材料的宽禁带半导体。这种半导体能带来更低的开关和导通损耗,因为材料的电子迁移率更好、电气强度更高,因而能实现更小的器件、更低的电容和更小的导电沟道长度。使用新材料制造开关带来了许多难题,包括将实用基片与GaN HEMT单元一起使用带来的热膨胀系数不匹配和SiC MOSFET中的“晶格缺陷”与“基底平面错位”,这些都会降低性能和可靠性。制造工艺的改进会不断提升性能,而这些器件,尤其是SiC MOSFET,现已成为主流产品,正在逐渐占领传统的IGBT高功率应用。kFIednc

禁带器件在某些方面有所退步

然而,在某些方面,SiC MOSFET和GaN HEMT单元有所退步,它们并不像硅MOSFET一样容易驱动,所需的栅极电压级对于优化性能和可靠性十分重要,而且对于SiC,该阈值代表变化范围广,且有迟滞。SiC MOSFET栅氧化层的可靠性也受到质疑,GaN HEMT单元没有雪崩额定值,因而不得不让额定电压大幅降低。另一个退步是反向导电时的器件性能,这种反向导电是“换向”带来的,也就是电感负荷造成的电流自动反向流动。SiC MOSFET的体二极管在正向偏压下的压降约为4V,且在随后的反向偏压下有明显的反向恢复损耗。当GaN器件的电流换向时,它通过沟道导电,且无反向恢复问题,但是压降也很高,且会随栅极驱动而变。kFIednc

从历史中发现未来

向着正确方向发展需要“回顾”旧技术,也就是硅MOSFET和SiC JFET共源共栅,这被制造商和技术领袖UnitedSiC称为“SiC FET”。它在整体损耗方面的性能表征优于SiC MOSFET或GaN HEMT单元,它的栅极驱动并不关键且有稳定阈值,它的体二极管速度快、恢复损耗低且压降仅约1.5V。此外,这种器件有十分可靠的雪崩额定值和短路额定值,这些值不受栅极驱动影响。器件有650V、750V、1200V和1700V几个电压等级,导通电阻降至7毫欧,且有多种封装,大部分零件符合AEC-Q101标准,能减轻任何可能有的对可靠性的担忧。kFIednc

此外,这些器件快速开关带来的挑战可采用简单的RC缓冲电路解决,从而管理关闭过冲和振铃,并让这些SiC FET实现最佳性能。kFIednc

完美开关近在眼前了吗?设计师们总是想要更好的,但是SiC FET器件肯定已经非常接近理想开关了。kFIednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 碳化硅电力电子应用不止于汽车 第三代宽禁带半导体——碳化硅(SiC)——正在发挥其众所周知的潜力,在过去五年内,汽车行业一直是该材料的公开试验场。然而,电气化议程不会以汽车开始和结束。更广泛的运输应用将很快出现,包括卡车和公共汽车、船舶和航运、火车的进一步电气化,甚至飞机。在供电方面,并网太阳能发电系统和通过高压直流链路传输能源,对于低碳能源的生产和分配也至关重要。
  • 增强型GaN HEMT的漏极电流特性 增强型GaN基高电子迁移率晶体管(HEMT)已经采用两种不同的结构开发出来。这两种增强型结构是金属-绝缘层-半导体(MIS)结构和栅极注入晶体管(GIT)结构。MIS结构具有受电压驱动的小栅极漏电流,而GIT则具有脊形结构和高阈值电压。两者也都有一些缺点。MIS对栅极干扰的可靠性较低,阈值电压较低,而GIT的栅极开关速度较慢,栅极漏电流较大。
  • 适用于CSP GaN FET的简单高性能散热管理解决方案 本文将演示芯片级封装(CSP) GaN FET提供的散热性能为什么至少能与硅MOSFET相当,甚至更胜一筹。GaN FET由于其卓越的电气性能,尺寸可以减小,从而能在不违背温度限制的同时提高功率密度。本文还将通过PCB布局的详细3D有限元仿真对这种行为进行展示,同时还会提供实验验证,对分析提供支持。
  • 利用GaN技术在狭窄的环境中保持“冷静” 虽然GaN器件可实现更高的功率密度,但为了实现高可靠性的适销对路的适配器设计,仍有一些系统级问题需要解决。这些问题以散热设计和EMI合规性为中心。适配器内的电子电路必须要在放置它们的狭小空间中保持冷(表现出低温升)静(低发射噪声)。本文将着眼于实现这些目标的技术。
  • 美的威灵电机:两轮车电动力系统技术发展趋势与解决方案 日前,在AspenCore举办的“2022国际AIoT生态发展大会”的“智慧两轮车分论坛”上,广东威灵电机制造有限公司两轮车项目经理刘海量分享了“两轮车电动力系统技术发展趋势与解决方案”主题演讲。
  • 用于高达10kA功率扼流圈测量的晶闸管脉冲发生器 Bs&T Frankfurt am Main GmbH公司开发了一种基于晶闸管的新型脉冲发生器,并在各种感性功率器件上进行了测试。该脉冲发生器具有一些得益于晶闸管高脉冲电流处理能力的独特特性,与基于IGBT的系统相比,它具有一些主要优势。
  • 蓉矽半导体1200V碳化硅二极管产品“NovuSiC® EJBS™ ​成都蓉矽半导体具有自主知识产权的1200V碳化硅二极管产品“NovuSiC® EJBS™”系列已经实现量产。
  • 电动商用车的三种不同充电方案 随着重型或商用车辆的电气化,为比电动乘用车更大的电池充电变得必要。由于时间就是金钱,特别是在物流领域,分配空闲时间进行充电或增加充电功率是首选方案。这导致了三种不同的充电方案。
  • 25kW SiC直流快充设计指南 (第八部分):散热管理 在本系列的前几篇文章中,我们介绍了基于onsemi丰富的SiC功率模块和其他功率器件开发的25kW EV快充系统。在这一章,我们来看看其中的散热管理部分是如何提高效率和可靠性,同时防止系统过早失效的。
  • EPC CEO Alex Lidow:“志存高远,勇往直前” Bill Collins是我在1977年研究生毕业后加入IR时的战略营销主管。他指导我完成了功率MOSFET及其第二代版本HEXFET的开发。Bill刚满90岁,我们仍然会每隔几个月吃一次午饭。
  • 非抗辐射MOSFET能用于辐射环境吗? 最近遇到一家客户有点“不切实际”地执意要在辐射暴露的供电应用中,使用并非专为辐射环境而设计的功率MOSFET……
  • 25kW SiC直流快充设计指南 (第七部分):800V EV充电系 本篇将介绍25kW快充系统中的辅助电源设计。它基于onsemi针对800V母线电压的EV应用所做的一个辅助电源参考设计方案,即SECO-HVDCDC1362-40W-GEVB,它能提供15V/40W的持续输出供电。类似的方案还有SECO-HVDCDC1362-15W-GEVB,它能提供15V/15W的持续输出。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了